ArvindSelvaraj commited on
Commit
acbf534
·
verified ·
1 Parent(s): d399fd6

Upload backend.py

Browse files
Files changed (1) hide show
  1. backend.py +122 -0
backend.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import csv
3
+ import io
4
+ import requests
5
+ import html # For escaping HTML characters
6
+ from bs4 import BeautifulSoup
7
+ from openai import OpenAI
8
+
9
+ # Initialize OpenAI API with Nvidia's Mistral model
10
+ client = OpenAI(
11
+ base_url="https://integrate.api.nvidia.com/v1",
12
+ api_key="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"
13
+ )
14
+
15
+ def clean_test_case_output(text):
16
+ """
17
+ Cleans the output to handle HTML characters and unwanted tags.
18
+ """
19
+ # Unescape HTML entities (convert &lt; back to < and &gt; back to >)
20
+ text = html.unescape(text)
21
+
22
+ # Use BeautifulSoup to handle HTML tags more comprehensively
23
+ soup = BeautifulSoup(text, 'html.parser')
24
+
25
+ # Convert <br> tags to newlines and remove all other tags
26
+ cleaned_text = soup.get_text(separator="\n").strip()
27
+
28
+ return cleaned_text
29
+
30
+ def generate_testcases(user_story):
31
+ """
32
+ Generates advanced QA test cases based on a provided user story by interacting
33
+ with Nvidia's Mistral model API. The prompt is refined for clarity,
34
+ and the output is processed for better quality.
35
+
36
+ :param user_story: A string representing the user story for which to generate test cases.
37
+ :return: A list of test cases in the form of dictionaries.
38
+ """
39
+ try:
40
+ # Example few-shot learning prompt to guide the model
41
+ completion = client.chat.completions.create(
42
+ model="nv-mistralai/mistral-nemo-12b-instruct", # Using Mistral model
43
+ messages=[
44
+ {"role": "user", "content": f"Generate QA test cases for the following user story: {user_story}"}
45
+ ],
46
+ temperature=0.06, # Further lowering temperature for precise and deterministic output
47
+ top_p=0.5, # Prioritize high-probability tokens even more
48
+ max_tokens=2048, # Increase max tokens to allow longer content
49
+ stream=True # Streaming the response for faster retrieval
50
+ )
51
+
52
+ # Initialize an empty string to accumulate the response
53
+ test_cases_text = ""
54
+
55
+ # Accumulate the response from the streaming chunks
56
+ for chunk in completion:
57
+ if chunk.choices[0].delta.content is not None:
58
+ test_cases_text += chunk.choices[0].delta.content
59
+
60
+
61
+ # Ensure the entire response is captured before cleaning
62
+ if test_cases_text.strip() == "":
63
+ return [{"test_case": "No test cases generated or output was empty."}]
64
+
65
+ # Clean the output by unescaping HTML entities and replacing <br> tags
66
+ test_cases_text = clean_test_case_output(test_cases_text)
67
+
68
+ try:
69
+ # Try to parse the output as JSON, assuming the model returns structured test cases
70
+ test_cases = json.loads(test_cases_text)
71
+ if isinstance(test_cases, list):
72
+ return test_cases # Return structured test cases
73
+
74
+ else:
75
+ return [{"test_case": test_cases_text}] # Return as a list with the text wrapped in a dict
76
+
77
+ except json.JSONDecodeError:
78
+ # Fallback: return the raw text if JSON parsing fails
79
+ return [{"test_case": test_cases_text}]
80
+
81
+ except requests.exceptions.RequestException as e:
82
+ print(f"API request failed: {str(e)}")
83
+ return []
84
+ # Add options for multiple test case formats
85
+ def export_test_cases(test_cases, format='json'):
86
+ if not test_cases:
87
+ return "No test cases to export."
88
+
89
+ # Convert test cases (which are currently strings) into a structured format for CSV
90
+ structured_test_cases = [{'Test Case': case} for case in test_cases]
91
+
92
+ if format == 'json':
93
+ # Improve JSON export to be line-by-line formatted
94
+ return json.dumps(test_cases, indent=4, separators=(',', ': ')) # More readable format
95
+ elif format == 'csv':
96
+ # Check if test_cases is a list of dicts
97
+ if isinstance(test_cases, list) and isinstance(test_cases[0], dict):
98
+ output = io.StringIO()
99
+ csv_writer = csv.DictWriter(output, fieldnames=test_cases[0].keys(), quoting=csv.QUOTE_ALL)
100
+ csv_writer.writeheader()
101
+ csv_writer.writerows(test_cases)
102
+ return output.getvalue()
103
+ else:
104
+ raise ValueError("Test cases must be a list of dictionaries for CSV export.")
105
+
106
+ # 2. Save test cases as a downloadable file
107
+ def save_test_cases_as_file(test_cases, format='json'):
108
+ if not test_cases:
109
+ return "No test cases to save."
110
+
111
+ if format == 'json':
112
+ with open('test_cases.json', 'w') as f:
113
+ json.dump(test_cases, f)
114
+ elif format == 'csv':
115
+ with open('test_cases.csv', 'w', newline='') as file:
116
+ dict_writer = csv.DictWriter(file, fieldnames=test_cases[0].keys())
117
+ dict_writer.writeheader()
118
+ dict_writer.writerows(test_cases)
119
+ else:
120
+ return f"Unsupported format: {format}"
121
+ return f'{format} file saved'
122
+