|
|
|
import streamlit as st |
|
from langchain.chains import create_history_aware_retriever, create_retrieval_chain |
|
from langchain.chains.combine_documents import create_stuff_documents_chain |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.chat_message_histories import ChatMessageHistory |
|
from langchain_core.chat_history import BaseChatMessageHistory |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_groq import ChatGroq |
|
from langchain_core.runnables.history import RunnableWithMessageHistory |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import PyPDFLoader |
|
import os |
|
|
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
os.environ['HF_TOKEN']=os.getenv("HF_TOKEN") |
|
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
|
|
st.title("Conversational RAG With PDF uploads and chat history") |
|
st.write("Upload Pdf's and chat with their content") |
|
|
|
|
|
api_key=st.text_input("Enter your Groq API key:",type="password") |
|
|
|
|
|
if api_key: |
|
llm=ChatGroq(groq_api_key=api_key,model_name="Gemma2-9b-It") |
|
|
|
|
|
|
|
session_id=st.text_input("Session ID",value="default_session") |
|
|
|
|
|
if 'store' not in st.session_state: |
|
st.session_state.store={} |
|
|
|
uploaded_files=st.file_uploader("Choose A PDf file",type="pdf",accept_multiple_files=True) |
|
|
|
if uploaded_files: |
|
documents=[] |
|
for uploaded_file in uploaded_files: |
|
temppdf=f"./temp.pdf" |
|
with open(temppdf,"wb") as file: |
|
file.write(uploaded_file.getvalue()) |
|
file_name=uploaded_file.name |
|
|
|
loader=PyPDFLoader(temppdf) |
|
docs=loader.load() |
|
documents.extend(docs) |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500) |
|
splits = text_splitter.split_documents(documents) |
|
vectorstore = FAISS.from_documents(documents=splits, embedding=embeddings) |
|
retriever = vectorstore.as_retriever() |
|
|
|
contextualize_q_system_prompt=( |
|
"Given a chat history and the latest user question" |
|
"which might reference context in the chat history, " |
|
"formulate a standalone question which can be understood " |
|
"without the chat history. Do NOT answer the question, " |
|
"just reformulate it if needed and otherwise return it as is." |
|
) |
|
contextualize_q_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", contextualize_q_system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}"), |
|
] |
|
) |
|
|
|
history_aware_retriever=create_history_aware_retriever(llm,retriever,contextualize_q_prompt) |
|
|
|
|
|
|
|
|
|
system_prompt = ( |
|
"You are an assistant for question-answering tasks. " |
|
"Use the following pieces of retrieved context to answer " |
|
"the question. If you don't know the answer, say that you " |
|
"don't know. Use three sentences maximum and keep the " |
|
"answer concise." |
|
"\n\n" |
|
"{context}" |
|
) |
|
qa_prompt = ChatPromptTemplate.from_messages( |
|
[ |
|
("system", system_prompt), |
|
MessagesPlaceholder("chat_history"), |
|
("human", "{input}"), |
|
] |
|
) |
|
|
|
question_answer_chain=create_stuff_documents_chain(llm,qa_prompt) |
|
rag_chain=create_retrieval_chain(history_aware_retriever,question_answer_chain) |
|
|
|
def get_session_history(session:str)->BaseChatMessageHistory: |
|
if session_id not in st.session_state.store: |
|
st.session_state.store[session_id]=ChatMessageHistory() |
|
return st.session_state.store[session_id] |
|
|
|
conversational_rag_chain=RunnableWithMessageHistory( |
|
rag_chain,get_session_history, |
|
input_messages_key="input", |
|
history_messages_key="chat_history", |
|
output_messages_key="answer" |
|
) |
|
|
|
user_input = st.text_input("Your question:") |
|
if user_input: |
|
session_history=get_session_history(session_id) |
|
response = conversational_rag_chain.invoke( |
|
{"input": user_input}, |
|
config={ |
|
"configurable": {"session_id":session_id} |
|
}, |
|
) |
|
st.write(st.session_state.store) |
|
st.write("Assistant:", response['answer']) |
|
st.write("Chat History:", session_history.messages) |
|
else: |
|
st.warning("Please enter the GRoq API Key") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|