Update app.py
Browse files
app.py
CHANGED
@@ -15,27 +15,23 @@ from langchain.chains import create_history_aware_retriever, create_retrieval_ch
|
|
15 |
from langchain.vectorstores import Chroma
|
16 |
from utills import load_txt_documents , split_docs, load_uploaded_documents,retriever_from_chroma
|
17 |
|
18 |
-
|
19 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
data_path = "data"
|
21 |
model_path = os.path.join(script_dir, 'qwen2-0_5b-instruct-q4_0.gguf')
|
22 |
store = {}
|
23 |
|
24 |
-
|
25 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
26 |
model_kwargs = {'device': 'cpu'}
|
27 |
encode_kwargs = {'normalize_embeddings': True}
|
28 |
|
29 |
-
# Use Streamlit's cache to avoid recomputation
|
30 |
-
@st.cache_resource
|
31 |
-
def load_embeddings():
|
32 |
-
return HuggingFaceEmbeddings(
|
33 |
-
model_name=model_name,
|
34 |
-
model_kwargs=model_kwargs,
|
35 |
-
encode_kwargs=encode_kwargs
|
36 |
-
)
|
37 |
|
38 |
-
hf =
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
|
|
|
15 |
from langchain.vectorstores import Chroma
|
16 |
from utills import load_txt_documents , split_docs, load_uploaded_documents,retriever_from_chroma
|
17 |
|
18 |
+
|
19 |
script_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
data_path = "data"
|
21 |
model_path = os.path.join(script_dir, 'qwen2-0_5b-instruct-q4_0.gguf')
|
22 |
store = {}
|
23 |
|
24 |
+
|
25 |
model_name = "sentence-transformers/all-mpnet-base-v2"
|
26 |
model_kwargs = {'device': 'cpu'}
|
27 |
encode_kwargs = {'normalize_embeddings': True}
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
hf = HuggingFaceEmbeddings(
|
31 |
+
model_name=model_name,
|
32 |
+
model_kwargs=model_kwargs,
|
33 |
+
encode_kwargs=encode_kwargs
|
34 |
+
)
|
35 |
|
36 |
|
37 |
|