Update app.py
Browse files
app.py
CHANGED
|
@@ -75,9 +75,29 @@ def create_retriever_from_chroma(vectorstore_path="./docs/chroma/", search_type=
|
|
| 75 |
|
| 76 |
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
-
return
|
| 81 |
|
| 82 |
|
| 83 |
|
|
@@ -139,7 +159,7 @@ def main():
|
|
| 139 |
def handle_userinput(user_question,retriever,rag_chain):
|
| 140 |
st.session_state.messages.append({"role": "user", "content": user_question})
|
| 141 |
st.chat_message("user").write(user_question)
|
| 142 |
-
docs = retriever.
|
| 143 |
|
| 144 |
with st.sidebar:
|
| 145 |
st.subheader("Your documents")
|
|
|
|
| 75 |
|
| 76 |
retriever=vectorstore.as_retriever(search_type = search_type, search_kwargs={"k": k})
|
| 77 |
|
| 78 |
+
llm = llamacpp.LlamaCpp(
|
| 79 |
+
model_path = "JCHAVEROT_Qwen2-0.5B-Chat_SFT_DPO.Q8_0.gguf",
|
| 80 |
+
seed = 41,
|
| 81 |
+
n_gpu_layers=0,
|
| 82 |
+
temperature=0.0,
|
| 83 |
+
n_ctx=15000,
|
| 84 |
+
n_batch=2000,
|
| 85 |
+
max_tokens=1500,
|
| 86 |
+
repeat_penalty=1.8,
|
| 87 |
+
last_n_tokens_size = 200,
|
| 88 |
+
callback_manager=callback_manager,
|
| 89 |
+
verbose=False,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
compressor = LLMChainExtractor.from_llm(llm)
|
| 93 |
+
|
| 94 |
+
compression_retriever = ContextualCompressionRetriever(
|
| 95 |
+
base_compressor=compressor,
|
| 96 |
+
base_retriever=retriever
|
| 97 |
+
)
|
| 98 |
|
| 99 |
|
| 100 |
+
return compression_retriever
|
| 101 |
|
| 102 |
|
| 103 |
|
|
|
|
| 159 |
def handle_userinput(user_question,retriever,rag_chain):
|
| 160 |
st.session_state.messages.append({"role": "user", "content": user_question})
|
| 161 |
st.chat_message("user").write(user_question)
|
| 162 |
+
docs = retriever.get_relevant_documents(user_question)
|
| 163 |
|
| 164 |
with st.sidebar:
|
| 165 |
st.subheader("Your documents")
|