File size: 5,580 Bytes
1f41ee0
dd53874
fe1fc2e
467c73a
fe1fc2e
467c73a
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
fe1fc2e
0713e0a
2a30575
fe1fc2e
 
467c73a
fe1fc2e
 
 
 
467c73a
 
 
 
 
 
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
 
 
 
 
 
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
 
 
fe1fc2e
 
 
467c73a
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
 
fe1fc2e
467c73a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1fc2e
 
 
 
 
 
467c73a
 
 
 
 
fe1fc2e
 
 
 
 
 
 
 
 
 
 
467c73a
 
 
fe1fc2e
467c73a
fe1fc2e
467c73a
 
 
fe1fc2e
467c73a
 
fe1fc2e
467c73a
 
 
 
 
 
 
 
 
fe1fc2e
467c73a
fe1fc2e
 
 
 
 
 
 
 
467c73a
 
fe1fc2e
467c73a
fe1fc2e
 
467c73a
fe1fc2e
 
 
237d231
 
fe1fc2e
 
 
 
 
 
 
 
237d231
fe1fc2e
237d231
 
 
fe1fc2e
 
 
 
 
467c73a
fe1fc2e
237d231
fe1fc2e
 
4b2597b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171


import os
import streamlit as st
from transformers import pipeline
from langchain import HuggingFaceEmbeddings, CallbackManager, LlamaCpp, TextLoader, create_stuff_documents_chain, create_retrieval_chain, RunnableWithMessageHistory, ChatPromptTemplate, MessagesPlaceholder, StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.vectorstores import Chroma
from langchain.retrievers import mmr_retriever

# Initialize variables and paths
script_dir = os.path.dirname(os.path.abspath(__file__))
data_path = "./data/"
model_path = os.path.join(script_dir, 'mistral-7b-v0.1-layla-v4-Q4_K_M.gguf.2')
store = {}

# Set up HuggingFace embeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}

# Use Streamlit's cache to avoid recomputation
@st.cache_resource
def load_embeddings():
    return HuggingFaceEmbeddings(
        model_name=model_name,
        model_kwargs=model_kwargs,
        encode_kwargs=encode_kwargs
    )

hf = load_embeddings()

@st.cache_data
def load_documents(data_path):
    documents = []
    for filename in os.listdir(data_path):
        if filename.endswith('.txt'):
            file_path = os.path.join(data_path, filename)
            documents.extend(TextLoader(file_path).load())
    return documents

documents = load_documents(data_path)

def split_docs(documents, chunk_size, overlap):
    # Your implementation here
    pass

docs = split_docs(documents, 450, 20)

@st.cache_resource
def create_chroma_db(docs, hf):
    return Chroma(docs, hf)

chroma_db = create_chroma_db(docs, hf)

@st.cache_resource
def create_retriever(chroma_db):
    return mmr_retriever(chroma_db, "mmr", 6)

retriever = create_retriever(chroma_db)

# Set up LlamaCpp model
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])

@st.cache_resource
def load_llm():
    return LlamaCpp(
        model_path='qwen2-0_5b-instruct-q4_0.gguf',
        n_gpu_layers=0,
        temperature=0.0,
        top_p=0.5,
        n_ctx=7000,
        max_tokens=350,
        repeat_penalty=1.7,
        stop=["", "Instruction:", "### Instruction:", "###<user>", "</user>"],
        callback_manager=callback_manager,
        verbose=False,
    )

llm = load_llm()

contextualize_q_system_prompt = """Given a context, chat history and the latest user question
which maybe reference context in the chat history, formulate a standalone question
which can be understood without the chat history. Do NOT answer the question,
just reformulate it if needed and otherwise return it as is."""

@st.cache_resource
def create_history_aware_retriever():
    return history_aware_retriever(llm, retriever, contextualize_q_system_prompt)

ha_retriever = create_history_aware_retriever()

qa_system_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Be as informative as possible, be polite and formal.\n{context}"""

qa_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", qa_system_prompt),
        MessagesPlaceholder("chat_history"),
        ("human", "{input}"),
    ]
)

@st.cache_resource
def create_question_answer_chain():
    return create_stuff_documents_chain(llm, qa_prompt)

question_answer_chain = create_question_answer_chain()

@st.cache_resource
def create_rag_chain():
    return create_retrieval_chain(ha_retriever, question_answer_chain)

rag_chain = create_rag_chain()
msgs = StreamlitChatMessageHistory(key="special_app_key")

@st.cache_resource
def create_conversational_rag_chain():
    return RunnableWithMessageHistory(
        rag_chain,
        lambda session_id: msgs,
        input_messages_key="input",
        history_messages_key="chat_history",
        output_messages_key="answer",
    )

conversational_rag_chain = create_conversational_rag_chain()

def display_chat_history(chat_history):
    """Displays the chat history in Streamlit."""
    for msg in chat_history.messages:
        st.chat_message(msg.type).write(msg.content)

def display_documents(docs, on_click=None):
    """Displays retrieved documents with optional click action."""
    if docs:
        for i, document in enumerate(docs):
            st.write(f"**Docs {i+1}**")
            st.markdown(document, unsafe_allow_html=True)
            if on_click:
                if st.button(f"Expand Article {i+1}"):
                    on_click(i)

def main(conversational_rag_chain):
    """Main function for the Streamlit app."""
    msgs = st.session_state.get("chat_history", StreamlitChatMessageHistory(key="special_app_key"))
    chain_with_history = conversational_rag_chain

    st.title("Conversational RAG Chatbot")

    display_chat_history(msgs)

    if prompt := st.chat_input():
        st.chat_message("human").write(prompt)

        input_dict = {"input": prompt, "chat_history": msgs.messages}
        config = {"configurable": {"session_id": "any"}}

        response = chain_with_history.invoke(input_dict, config)
        st.chat_message("ai").write(response["answer"])

        if "docs" in response and response["documents"]:
            docs = response["documents"]
            def expand_document(index):
                st.write(f"Expanding document {index+1}...")
            display_documents(docs, expand_document)

    st.session_state["chat_history"] = msgs

if __name__ == "__main__":
    main(conversational_rag_chain)