File size: 5,580 Bytes
1f41ee0 dd53874 fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 0713e0a 2a30575 fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 467c73a fe1fc2e 237d231 fe1fc2e 237d231 fe1fc2e 237d231 fe1fc2e 467c73a fe1fc2e 237d231 fe1fc2e 4b2597b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import os
import streamlit as st
from transformers import pipeline
from langchain import HuggingFaceEmbeddings, CallbackManager, LlamaCpp, TextLoader, create_stuff_documents_chain, create_retrieval_chain, RunnableWithMessageHistory, ChatPromptTemplate, MessagesPlaceholder, StreamlitChatMessageHistory
from langchain.prompts import PromptTemplate
from langchain.chains.question_answering import load_qa_chain
from langchain.vectorstores import Chroma
from langchain.retrievers import mmr_retriever
# Initialize variables and paths
script_dir = os.path.dirname(os.path.abspath(__file__))
data_path = "./data/"
model_path = os.path.join(script_dir, 'mistral-7b-v0.1-layla-v4-Q4_K_M.gguf.2')
store = {}
# Set up HuggingFace embeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': True}
# Use Streamlit's cache to avoid recomputation
@st.cache_resource
def load_embeddings():
return HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
hf = load_embeddings()
@st.cache_data
def load_documents(data_path):
documents = []
for filename in os.listdir(data_path):
if filename.endswith('.txt'):
file_path = os.path.join(data_path, filename)
documents.extend(TextLoader(file_path).load())
return documents
documents = load_documents(data_path)
def split_docs(documents, chunk_size, overlap):
# Your implementation here
pass
docs = split_docs(documents, 450, 20)
@st.cache_resource
def create_chroma_db(docs, hf):
return Chroma(docs, hf)
chroma_db = create_chroma_db(docs, hf)
@st.cache_resource
def create_retriever(chroma_db):
return mmr_retriever(chroma_db, "mmr", 6)
retriever = create_retriever(chroma_db)
# Set up LlamaCpp model
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
@st.cache_resource
def load_llm():
return LlamaCpp(
model_path='qwen2-0_5b-instruct-q4_0.gguf',
n_gpu_layers=0,
temperature=0.0,
top_p=0.5,
n_ctx=7000,
max_tokens=350,
repeat_penalty=1.7,
stop=["", "Instruction:", "### Instruction:", "###<user>", "</user>"],
callback_manager=callback_manager,
verbose=False,
)
llm = load_llm()
contextualize_q_system_prompt = """Given a context, chat history and the latest user question
which maybe reference context in the chat history, formulate a standalone question
which can be understood without the chat history. Do NOT answer the question,
just reformulate it if needed and otherwise return it as is."""
@st.cache_resource
def create_history_aware_retriever():
return history_aware_retriever(llm, retriever, contextualize_q_system_prompt)
ha_retriever = create_history_aware_retriever()
qa_system_prompt = """You are an assistant for question-answering tasks. Use the following pieces of retrieved context to answer the question. If you don't know the answer, just say that you don't know. Be as informative as possible, be polite and formal.\n{context}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder("chat_history"),
("human", "{input}"),
]
)
@st.cache_resource
def create_question_answer_chain():
return create_stuff_documents_chain(llm, qa_prompt)
question_answer_chain = create_question_answer_chain()
@st.cache_resource
def create_rag_chain():
return create_retrieval_chain(ha_retriever, question_answer_chain)
rag_chain = create_rag_chain()
msgs = StreamlitChatMessageHistory(key="special_app_key")
@st.cache_resource
def create_conversational_rag_chain():
return RunnableWithMessageHistory(
rag_chain,
lambda session_id: msgs,
input_messages_key="input",
history_messages_key="chat_history",
output_messages_key="answer",
)
conversational_rag_chain = create_conversational_rag_chain()
def display_chat_history(chat_history):
"""Displays the chat history in Streamlit."""
for msg in chat_history.messages:
st.chat_message(msg.type).write(msg.content)
def display_documents(docs, on_click=None):
"""Displays retrieved documents with optional click action."""
if docs:
for i, document in enumerate(docs):
st.write(f"**Docs {i+1}**")
st.markdown(document, unsafe_allow_html=True)
if on_click:
if st.button(f"Expand Article {i+1}"):
on_click(i)
def main(conversational_rag_chain):
"""Main function for the Streamlit app."""
msgs = st.session_state.get("chat_history", StreamlitChatMessageHistory(key="special_app_key"))
chain_with_history = conversational_rag_chain
st.title("Conversational RAG Chatbot")
display_chat_history(msgs)
if prompt := st.chat_input():
st.chat_message("human").write(prompt)
input_dict = {"input": prompt, "chat_history": msgs.messages}
config = {"configurable": {"session_id": "any"}}
response = chain_with_history.invoke(input_dict, config)
st.chat_message("ai").write(response["answer"])
if "docs" in response and response["documents"]:
docs = response["documents"]
def expand_document(index):
st.write(f"Expanding document {index+1}...")
display_documents(docs, expand_document)
st.session_state["chat_history"] = msgs
if __name__ == "__main__":
main(conversational_rag_chain) |