|
import os
|
|
import torch
|
|
from collections import OrderedDict
|
|
|
|
|
|
def extract(ckpt):
|
|
a = ckpt["model"]
|
|
opt = OrderedDict()
|
|
opt["weight"] = {}
|
|
for key in a.keys():
|
|
if "enc_q" in key:
|
|
continue
|
|
opt["weight"][key] = a[key]
|
|
return opt
|
|
|
|
|
|
def model_blender(name, path1, path2, ratio):
|
|
try:
|
|
message = f"Model {path1} and {path2} are merged with alpha {ratio}."
|
|
ckpt1 = torch.load(path1, map_location="cpu")
|
|
ckpt2 = torch.load(path2, map_location="cpu")
|
|
cfg = ckpt1["config"]
|
|
cfg_f0 = ckpt1["f0"]
|
|
cfg_version = ckpt1["version"]
|
|
|
|
if "model" in ckpt1:
|
|
ckpt1 = extract(ckpt1)
|
|
else:
|
|
ckpt1 = ckpt1["weight"]
|
|
if "model" in ckpt2:
|
|
ckpt2 = extract(ckpt2)
|
|
else:
|
|
ckpt2 = ckpt2["weight"]
|
|
|
|
if sorted(list(ckpt1.keys())) != sorted(list(ckpt2.keys())):
|
|
return "Fail to merge the models. The model architectures are not the same."
|
|
|
|
opt = OrderedDict()
|
|
opt["weight"] = {}
|
|
for key in ckpt1.keys():
|
|
if key == "emb_g.weight" and ckpt1[key].shape != ckpt2[key].shape:
|
|
min_shape0 = min(ckpt1[key].shape[0], ckpt2[key].shape[0])
|
|
opt["weight"][key] = (
|
|
ratio * (ckpt1[key][:min_shape0].float())
|
|
+ (1 - ratio) * (ckpt2[key][:min_shape0].float())
|
|
).half()
|
|
else:
|
|
opt["weight"][key] = (
|
|
ratio * (ckpt1[key].float()) + (1 - ratio) * (ckpt2[key].float())
|
|
).half()
|
|
|
|
opt["config"] = cfg
|
|
opt["sr"] = message
|
|
opt["f0"] = cfg_f0
|
|
opt["version"] = cfg_version
|
|
opt["info"] = message
|
|
|
|
torch.save(opt, os.path.join("logs", "%s.pth" % name))
|
|
print(message)
|
|
return message, os.path.join("logs", "%s.pth" % name)
|
|
except Exception as error:
|
|
print(error)
|
|
return error
|
|
|