Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
+
import requests
|
| 4 |
+
import subprocess
|
| 5 |
+
import os
|
| 6 |
+
import pylint
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
| 10 |
+
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
|
| 11 |
+
import git
|
| 12 |
+
import spacy
|
| 13 |
+
from spacy.lang.en import English
|
| 14 |
+
import boto3
|
| 15 |
+
import unittest
|
| 16 |
+
import docker
|
| 17 |
+
import sympy as sp
|
| 18 |
+
from scipy.optimize import minimize, differential_evolution
|
| 19 |
+
import numpy as np
|
| 20 |
+
import matplotlib.pyplot as plt
|
| 21 |
+
import seaborn as sns
|
| 22 |
+
from IPython.display import display
|
| 23 |
+
from tenacity import retry, stop_after_attempt, wait_fixed
|
| 24 |
+
import torch
|
| 25 |
+
import torch.nn as nn
|
| 26 |
+
import torch.optim as optim
|
| 27 |
+
from transformers import AutoTokenizer, AutoModel
|
| 28 |
+
import networkx as nx
|
| 29 |
+
from sklearn.cluster import KMeans
|
| 30 |
+
from scipy.stats import ttest_ind
|
| 31 |
+
from statsmodels.tsa.arima.model import ARIMA
|
| 32 |
+
import nltk
|
| 33 |
+
from nltk.sentiment import SentimentIntensityAnalyzer
|
| 34 |
+
import cv2
|
| 35 |
+
from PIL import Image
|
| 36 |
+
import tensorflow as tf
|
| 37 |
+
from tensorflow.keras.applications import ResNet50
|
| 38 |
+
from tensorflow.keras.preprocessing import image
|
| 39 |
+
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
|
| 40 |
+
|
| 41 |
+
# Configure the Gemini API
|
| 42 |
+
genai.configure(api_key=st.secrets["GOOGLE_API_KEY"])
|
| 43 |
+
|
| 44 |
+
# Create the model with optimized parameters and enhanced system instructions
|
| 45 |
+
generation_config = {
|
| 46 |
+
"temperature": 0.4,
|
| 47 |
+
"top_p": 0.8,
|
| 48 |
+
"top_k": 50,
|
| 49 |
+
"max_output_tokens": 4096,
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
model = genai.GenerativeModel(
|
| 53 |
+
model_name="gemini-1.5-pro",
|
| 54 |
+
generation_config=generation_config,
|
| 55 |
+
system_instruction="""
|
| 56 |
+
You are Ath, an ultra-advanced AI code assistant with expertise across multiple domains including machine learning, data science, web development, cloud computing, and more. Your responses should showcase cutting-edge techniques, best practices, and innovative solutions.
|
| 57 |
+
"""
|
| 58 |
+
)
|
| 59 |
+
chat_session = model.start_chat(history=[])
|
| 60 |
+
|
| 61 |
+
@retry(stop=stop_after_attempt(5), wait=wait_fixed(2))
|
| 62 |
+
def generate_response(user_input):
|
| 63 |
+
try:
|
| 64 |
+
response = chat_session.send_message(user_input)
|
| 65 |
+
return response.text
|
| 66 |
+
except Exception as e:
|
| 67 |
+
return f"Error: {e}"
|
| 68 |
+
|
| 69 |
+
def optimize_code(code):
|
| 70 |
+
with open("temp_code.py", "w") as file:
|
| 71 |
+
file.write(code)
|
| 72 |
+
result = subprocess.run(["pylint", "temp_code.py"], capture_output=True, text=True)
|
| 73 |
+
os.remove("temp_code.py")
|
| 74 |
+
return code
|
| 75 |
+
|
| 76 |
+
def fetch_from_github(query):
|
| 77 |
+
# Implement GitHub API interaction here
|
| 78 |
+
pass
|
| 79 |
+
|
| 80 |
+
def interact_with_api(api_url):
|
| 81 |
+
response = requests.get(api_url)
|
| 82 |
+
return response.json()
|
| 83 |
+
|
| 84 |
+
def train_advanced_ml_model(X, y):
|
| 85 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
|
| 86 |
+
models = {
|
| 87 |
+
'Random Forest': RandomForestClassifier(n_estimators=100, random_state=42),
|
| 88 |
+
'Gradient Boosting': GradientBoostingClassifier(n_estimators=100, random_state=42)
|
| 89 |
+
}
|
| 90 |
+
results = {}
|
| 91 |
+
for name, model in models.items():
|
| 92 |
+
model.fit(X_train, y_train)
|
| 93 |
+
y_pred = model.predict(X_test)
|
| 94 |
+
results[name] = {
|
| 95 |
+
'accuracy': accuracy_score(y_test, y_pred),
|
| 96 |
+
'precision': precision_score(y_test, y_pred, average='weighted'),
|
| 97 |
+
'recall': recall_score(y_test, y_pred, average='weighted'),
|
| 98 |
+
'f1': f1_score(y_test, y_pred, average='weighted')
|
| 99 |
+
}
|
| 100 |
+
return results
|
| 101 |
+
|
| 102 |
+
def handle_error(error):
|
| 103 |
+
st.error(f"An error occurred: {error}")
|
| 104 |
+
# Implement advanced error logging and notification system here
|
| 105 |
+
|
| 106 |
+
def initialize_git_repo(repo_path):
|
| 107 |
+
if not os.path.exists(repo_path):
|
| 108 |
+
os.makedirs(repo_path)
|
| 109 |
+
if not os.path.exists(os.path.join(repo_path, '.git')):
|
| 110 |
+
repo = git.Repo.init(repo_path)
|
| 111 |
+
else:
|
| 112 |
+
repo = git.Repo(repo_path)
|
| 113 |
+
return repo
|
| 114 |
+
|
| 115 |
+
def integrate_with_git(repo_path, code):
|
| 116 |
+
repo = initialize_git_repo(repo_path)
|
| 117 |
+
with open(os.path.join(repo_path, "generated_code.py"), "w") as file:
|
| 118 |
+
file.write(code)
|
| 119 |
+
repo.index.add(["generated_code.py"])
|
| 120 |
+
repo.index.commit("Added generated code")
|
| 121 |
+
|
| 122 |
+
def process_user_input(user_input):
|
| 123 |
+
nlp = spacy.load("en_core_web_sm")
|
| 124 |
+
doc = nlp(user_input)
|
| 125 |
+
return doc
|
| 126 |
+
|
| 127 |
+
def interact_with_cloud_services(service_name, action, params):
|
| 128 |
+
client = boto3.client(service_name)
|
| 129 |
+
response = getattr(client, action)(**params)
|
| 130 |
+
return response
|
| 131 |
+
|
| 132 |
+
def run_tests():
|
| 133 |
+
tests_dir = os.path.join(os.getcwd(), 'tests')
|
| 134 |
+
if not os.path.exists(tests_dir):
|
| 135 |
+
os.makedirs(tests_dir)
|
| 136 |
+
init_file = os.path.join(tests_dir, '__init__.py')
|
| 137 |
+
if not os.path.exists(init_file):
|
| 138 |
+
with open(init_file, 'w') as f:
|
| 139 |
+
f.write('')
|
| 140 |
+
|
| 141 |
+
test_suite = unittest.TestLoader().discover(tests_dir)
|
| 142 |
+
test_runner = unittest.TextTestRunner()
|
| 143 |
+
test_result = test_runner.run(test_suite)
|
| 144 |
+
return test_result
|
| 145 |
+
|
| 146 |
+
def execute_code_in_docker(code):
|
| 147 |
+
client = docker.from_env()
|
| 148 |
+
try:
|
| 149 |
+
container = client.containers.run(
|
| 150 |
+
image="python:3.9",
|
| 151 |
+
command=f"python -c '{code}'",
|
| 152 |
+
detach=True,
|
| 153 |
+
remove=True
|
| 154 |
+
)
|
| 155 |
+
result = container.wait()
|
| 156 |
+
logs = container.logs().decode('utf-8')
|
| 157 |
+
return logs, result['StatusCode']
|
| 158 |
+
except Exception as e:
|
| 159 |
+
return f"Error: {e}", 1
|
| 160 |
+
|
| 161 |
+
def solve_complex_equation(equation):
|
| 162 |
+
x, y, z = sp.symbols('x y z')
|
| 163 |
+
eq = sp.Eq(eval(equation))
|
| 164 |
+
solution = sp.solve(eq)
|
| 165 |
+
return solution
|
| 166 |
+
|
| 167 |
+
def advanced_optimization(function, bounds):
|
| 168 |
+
result = differential_evolution(lambda x: eval(function), bounds)
|
| 169 |
+
return result.x, result.fun
|
| 170 |
+
|
| 171 |
+
def visualize_complex_data(data):
|
| 172 |
+
df = pd.DataFrame(data)
|
| 173 |
+
fig, axs = plt.subplots(2, 2, figsize=(16, 12))
|
| 174 |
+
|
| 175 |
+
sns.heatmap(df.corr(), annot=True, cmap='coolwarm', ax=axs[0, 0])
|
| 176 |
+
axs[0, 0].set_title('Correlation Heatmap')
|
| 177 |
+
|
| 178 |
+
sns.pairplot(df, diag_kind='kde', ax=axs[0, 1])
|
| 179 |
+
axs[0, 1].set_title('Pairplot')
|
| 180 |
+
|
| 181 |
+
df.plot(kind='box', ax=axs[1, 0])
|
| 182 |
+
axs[1, 0].set_title('Box Plot')
|
| 183 |
+
|
| 184 |
+
sns.violinplot(data=df, ax=axs[1, 1])
|
| 185 |
+
axs[1, 1].set_title('Violin Plot')
|
| 186 |
+
|
| 187 |
+
plt.tight_layout()
|
| 188 |
+
return fig
|
| 189 |
+
|
| 190 |
+
def analyze_complex_data(data):
|
| 191 |
+
df = pd.DataFrame(data)
|
| 192 |
+
summary = df.describe()
|
| 193 |
+
correlation = df.corr()
|
| 194 |
+
skewness = df.skew()
|
| 195 |
+
kurtosis = df.kurtosis()
|
| 196 |
+
return {
|
| 197 |
+
'summary': summary,
|
| 198 |
+
'correlation': correlation,
|
| 199 |
+
'skewness': skewness,
|
| 200 |
+
'kurtosis': kurtosis
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
def train_deep_learning_model(X, y):
|
| 204 |
+
class DeepNN(nn.Module):
|
| 205 |
+
def __init__(self, input_size):
|
| 206 |
+
super(DeepNN, self).__init__()
|
| 207 |
+
self.fc1 = nn.Linear(input_size, 64)
|
| 208 |
+
self.fc2 = nn.Linear(64, 32)
|
| 209 |
+
self.fc3 = nn.Linear(32, 1)
|
| 210 |
+
|
| 211 |
+
def forward(self, x):
|
| 212 |
+
x = torch.relu(self.fc1(x))
|
| 213 |
+
x = torch.relu(self.fc2(x))
|
| 214 |
+
x = torch.sigmoid(self.fc3(x))
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
X_tensor = torch.FloatTensor(X.values)
|
| 218 |
+
y_tensor = torch.FloatTensor(y.values)
|
| 219 |
+
|
| 220 |
+
model = DeepNN(X.shape[1])
|
| 221 |
+
criterion = nn.BCELoss()
|
| 222 |
+
optimizer = optim.Adam(model.parameters())
|
| 223 |
+
|
| 224 |
+
epochs = 100
|
| 225 |
+
for epoch in range(epochs):
|
| 226 |
+
optimizer.zero_grad()
|
| 227 |
+
outputs = model(X_tensor)
|
| 228 |
+
loss = criterion(outputs, y_tensor.unsqueeze(1))
|
| 229 |
+
loss.backward()
|
| 230 |
+
optimizer.step()
|
| 231 |
+
|
| 232 |
+
return model
|
| 233 |
+
|
| 234 |
+
def perform_nlp_analysis(text):
|
| 235 |
+
nlp = spacy.load("en_core_web_sm")
|
| 236 |
+
doc = nlp(text)
|
| 237 |
+
|
| 238 |
+
entities = [(ent.text, ent.label_) for ent in doc.ents]
|
| 239 |
+
tokens = [token.text for token in doc]
|
| 240 |
+
pos_tags = [(token.text, token.pos_) for token in doc]
|
| 241 |
+
|
| 242 |
+
sia = SentimentIntensityAnalyzer()
|
| 243 |
+
sentiment = sia.polarity_scores(text)
|
| 244 |
+
|
| 245 |
+
return {
|
| 246 |
+
'entities': entities,
|
| 247 |
+
'tokens': tokens,
|
| 248 |
+
'pos_tags': pos_tags,
|
| 249 |
+
'sentiment': sentiment
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
def perform_image_analysis(image_path):
|
| 253 |
+
img = cv2.imread(image_path)
|
| 254 |
+
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 255 |
+
|
| 256 |
+
# Perform object detection
|
| 257 |
+
model = ResNet50(weights='imagenet')
|
| 258 |
+
img_resized = cv2.resize(img_rgb, (224, 224))
|
| 259 |
+
img_array = image.img_to_array(img_resized)
|
| 260 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 261 |
+
img_array = preprocess_input(img_array)
|
| 262 |
+
|
| 263 |
+
predictions = model.predict(img_array)
|
| 264 |
+
decoded_predictions = decode_predictions(predictions, top=3)[0]
|
| 265 |
+
|
| 266 |
+
# Perform edge detection
|
| 267 |
+
edges = cv2.Canny(img, 100, 200)
|
| 268 |
+
|
| 269 |
+
return {
|
| 270 |
+
'predictions': decoded_predictions,
|
| 271 |
+
'edges': edges
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
def perform_time_series_analysis(data):
|
| 275 |
+
df = pd.DataFrame(data)
|
| 276 |
+
model = ARIMA(df, order=(1, 1, 1))
|
| 277 |
+
results = model.fit()
|
| 278 |
+
forecast = results.forecast(steps=5)
|
| 279 |
+
return {
|
| 280 |
+
'model_summary': results.summary(),
|
| 281 |
+
'forecast': forecast
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
def perform_graph_analysis(nodes, edges):
|
| 285 |
+
G = nx.Graph()
|
| 286 |
+
G.add_nodes_from(nodes)
|
| 287 |
+
G.add_edges_from(edges)
|
| 288 |
+
|
| 289 |
+
centrality = nx.degree_centrality(G)
|
| 290 |
+
clustering = nx.clustering(G)
|
| 291 |
+
shortest_paths = dict(nx.all_pairs_shortest_path_length(G))
|
| 292 |
+
|
| 293 |
+
return {
|
| 294 |
+
'centrality': centrality,
|
| 295 |
+
'clustering': clustering,
|
| 296 |
+
'shortest_paths': shortest_paths
|
| 297 |
+
}
|
| 298 |
+
|
| 299 |
+
# Streamlit UI setup
|
| 300 |
+
st.set_page_config(page_title="Ultra AI Code Assistant", page_icon="🚀", layout="wide")
|
| 301 |
+
|
| 302 |
+
# ... (Keep the existing CSS styles)
|
| 303 |
+
|
| 304 |
+
st.markdown('<div class="main-container">', unsafe_allow_html=True)
|
| 305 |
+
st.title("🚀 Ultra AI Code Assistant")
|
| 306 |
+
st.markdown('<p class="subtitle">Powered by Advanced AI and Domain Expertise</p>', unsafe_allow_html=True)
|
| 307 |
+
|
| 308 |
+
task_type = st.selectbox("Select Task Type", [
|
| 309 |
+
"Code Generation",
|
| 310 |
+
"Machine Learning",
|
| 311 |
+
"Data Analysis",
|
| 312 |
+
"Natural Language Processing",
|
| 313 |
+
"Image Analysis",
|
| 314 |
+
"Time Series Analysis",
|
| 315 |
+
"Graph Analysis"
|
| 316 |
+
])
|
| 317 |
+
|
| 318 |
+
prompt = st.text_area("Enter your task description or code:", height=120)
|
| 319 |
+
|
| 320 |
+
if st.button("Execute Task"):
|
| 321 |
+
if prompt.strip() == "":
|
| 322 |
+
st.error("Please enter a valid prompt.")
|
| 323 |
+
else:
|
| 324 |
+
with st.spinner("Processing your request..."):
|
| 325 |
+
try:
|
| 326 |
+
if task_type == "Code Generation":
|
| 327 |
+
processed_input = process_user_input(prompt)
|
| 328 |
+
completed_text = generate_response(processed_input.text)
|
| 329 |
+
if "Error" in completed_text:
|
| 330 |
+
handle_error(completed_text)
|
| 331 |
+
else:
|
| 332 |
+
optimized_code = optimize_code(completed_text)
|
| 333 |
+
st.success("Code generated and optimized successfully!")
|
| 334 |
+
|
| 335 |
+
st.markdown('<div class="output-container">', unsafe_allow_html=True)
|
| 336 |
+
st.markdown('<div class="code-block">', unsafe_allow_html=True)
|
| 337 |
+
st.code(optimized_code)
|
| 338 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 339 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 340 |
+
|
| 341 |
+
repo_path = "./repo"
|
| 342 |
+
integrate_with_git(repo_path, optimized_code)
|
| 343 |
+
|
| 344 |
+
test_result = run_tests()
|
| 345 |
+
if test_result.wasSuccessful():
|
| 346 |
+
st.success("All tests passed successfully!")
|
| 347 |
+
else:
|
| 348 |
+
st.error("Some tests failed. Please check the code.")
|
| 349 |
+
|
| 350 |
+
execution_result, status_code = execute_code_in_docker(optimized_code)
|
| 351 |
+
if status_code == 0:
|
| 352 |
+
st.success("Code executed successfully in Docker!")
|
| 353 |
+
st.text(execution_result)
|
| 354 |
+
else:
|
| 355 |
+
st.error(f"Code execution failed: {execution_result}")
|
| 356 |
+
|
| 357 |
+
elif task_type == "Machine Learning":
|
| 358 |
+
# For demonstration, we'll use a sample dataset
|
| 359 |
+
from sklearn.datasets import make_classification
|
| 360 |
+
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, random_state=42)
|
| 361 |
+
results = train_advanced_ml_model(X, y)
|
| 362 |
+
st.write("Machine Learning Model Performance:")
|
| 363 |
+
st.json(results)
|
| 364 |
+
|
| 365 |
+
st.write("Deep Learning Model:")
|
| 366 |
+
deep_model = train_deep_learning_model(pd.DataFrame(X), pd.Series(y))
|
| 367 |
+
st.write(deep_model)
|
| 368 |
+
|
| 369 |
+
elif task_type == "Data Analysis":
|
| 370 |
+
# For demonstration, we'll use a sample dataset
|
| 371 |
+
data = pd.DataFrame(np.random.randn(100, 5), columns=['A', 'B', 'C', 'D', 'E'])
|
| 372 |
+
analysis_results = analyze_complex_data(data)
|
| 373 |
+
st.write("Data Analysis Results:")
|
| 374 |
+
st.write(analysis_results['summary'])
|
| 375 |
+
st.write("Correlation Matrix:")
|
| 376 |
+
st.write(analysis_results['correlation'])
|
| 377 |
+
|
| 378 |
+
fig = visualize_complex_data(data)
|
| 379 |
+
st.pyplot(fig)
|
| 380 |
+
|
| 381 |
+
elif task_type == "Natural Language Processing":
|
| 382 |
+
nlp_results = perform_nlp_analysis(prompt)
|
| 383 |
+
st.write("NLP Analysis Results:")
|
| 384 |
+
st.json(nlp_results)
|
| 385 |
+
|
| 386 |
+
elif task_type == "Image Analysis":
|
| 387 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
| 388 |
+
if uploaded_file is not None:
|
| 389 |
+
image = Image.open(uploaded_file)
|
| 390 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 391 |
+
|
| 392 |
+
# Save the uploaded image temporarily
|
| 393 |
+
with open("temp_image.jpg", "wb") as f:
|
| 394 |
+
f.write(uploaded_file.getbuffer())
|
| 395 |
+
|
| 396 |
+
analysis_results = perform_image_analysis("temp_image.jpg")
|
| 397 |
+
|
| 398 |
+
st.write("Image Analysis Results:")
|
| 399 |
+
st.write("Top 3 predictions:")
|
| 400 |
+
for i, (imagenet_id, label, score) in enumerate(analysis_results['predictions']):
|
| 401 |
+
st.write(f"{i + 1}: {label} ({score:.2f})")
|
| 402 |
+
|
| 403 |
+
st.write("Edge Detection:")
|
| 404 |
+
st.image(analysis_results['edges'], caption='Edge Detection', use_column_width=True)
|
| 405 |
+
|
| 406 |
+
# Remove the temporary image file
|
| 407 |
+
os.remove("temp_image.jpg")
|
| 408 |
+
|
| 409 |
+
elif task_type == "Time Series Analysis":
|
| 410 |
+
# For demonstration, we'll use a sample time series dataset
|
| 411 |
+
dates = pd.date_range(start='1/1/2020', end='1/1/2021', freq='D')
|
| 412 |
+
values = np.random.randn(len(dates)).cumsum()
|
| 413 |
+
ts_data = pd.Series(values, index=dates)
|
| 414 |
+
|
| 415 |
+
st.line_chart(ts_data)
|
| 416 |
+
|
| 417 |
+
analysis_results = perform_time_series_analysis(ts_data)
|
| 418 |
+
st.write("Time Series Analysis Results:")
|
| 419 |
+
st.write(analysis_results['model_summary'])
|
| 420 |
+
st.write("Forecast for the next 5 periods:")
|
| 421 |
+
st.write(analysis_results['forecast'])
|
| 422 |
+
|
| 423 |
+
elif task_type == "Graph Analysis":
|
| 424 |
+
# For demonstration, we'll use a sample graph
|
| 425 |
+
nodes = range(1, 11)
|
| 426 |
+
edges = [(1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (5, 9), (6, 10)]
|
| 427 |
+
|
| 428 |
+
analysis_results = perform_graph_analysis(nodes, edges)
|
| 429 |
+
st.write("Graph Analysis Results:")
|
| 430 |
+
st.write("Centrality:")
|
| 431 |
+
st.json(analysis_results['centrality'])
|
| 432 |
+
st.write("Clustering Coefficient:")
|
| 433 |
+
st.json(analysis_results['clustering'])
|
| 434 |
+
|
| 435 |
+
# Visualize the graph
|
| 436 |
+
G = nx.Graph()
|
| 437 |
+
G.add_nodes_from(nodes)
|
| 438 |
+
G.add_edges_from(edges)
|
| 439 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 440 |
+
nx.draw(G, with_labels=True, node_color='lightblue', node_size=500, font_size=16, font_weight='bold', ax=ax)
|
| 441 |
+
st.pyplot(fig)
|
| 442 |
+
|
| 443 |
+
except Exception as e:
|
| 444 |
+
handle_error(e)
|
| 445 |
+
|
| 446 |
+
st.markdown("""
|
| 447 |
+
<div style='text-align: center; margin-top: 2rem; color: #4a5568;'>
|
| 448 |
+
Created with ❤️ by Your Ultra AI Code Assistant
|
| 449 |
+
</div>
|
| 450 |
+
""", unsafe_allow_html=True)
|
| 451 |
+
|
| 452 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
| 453 |
+
|
| 454 |
+
# Additional helper functions
|
| 455 |
+
|
| 456 |
+
def explain_code(code):
|
| 457 |
+
"""Generate an explanation for the given code using NLP techniques."""
|
| 458 |
+
explanation = generate_response(f"Explain the following code:\n\n{code}")
|
| 459 |
+
return explanation
|
| 460 |
+
|
| 461 |
+
def generate_unit_tests(code):
|
| 462 |
+
"""Generate unit tests for the given code."""
|
| 463 |
+
unit_tests = generate_response(f"Generate unit tests for the following code:\n\n{code}")
|
| 464 |
+
return unit_tests
|
| 465 |
+
|
| 466 |
+
def suggest_optimizations(code):
|
| 467 |
+
"""Suggest optimizations for the given code."""
|
| 468 |
+
optimizations = generate_response(f"Suggest optimizations for the following code:\n\n{code}")
|
| 469 |
+
return optimizations
|
| 470 |
+
|
| 471 |
+
def generate_documentation(code):
|
| 472 |
+
"""Generate documentation for the given code."""
|
| 473 |
+
documentation = generate_response(f"Generate documentation for the following code:\n\n{code}")
|
| 474 |
+
return documentation
|
| 475 |
+
|
| 476 |
+
# Add these new functions to the Streamlit UI
|
| 477 |
+
if task_type == "Code Generation":
|
| 478 |
+
st.sidebar.header("Code Analysis Tools")
|
| 479 |
+
if st.sidebar.button("Explain Code"):
|
| 480 |
+
explanation = explain_code(optimized_code)
|
| 481 |
+
st.sidebar.subheader("Code Explanation")
|
| 482 |
+
st.sidebar.write(explanation)
|
| 483 |
+
|
| 484 |
+
if st.sidebar.button("Generate Unit Tests"):
|
| 485 |
+
unit_tests = generate_unit_tests(optimized_code)
|
| 486 |
+
st.sidebar.subheader("Generated Unit Tests")
|
| 487 |
+
st.sidebar.code(unit_tests)
|
| 488 |
+
|
| 489 |
+
if st.sidebar.button("Suggest Optimizations"):
|
| 490 |
+
optimizations = suggest_optimizations(optimized_code)
|
| 491 |
+
st.sidebar.subheader("Suggested Optimizations")
|
| 492 |
+
st.sidebar.write(optimizations)
|
| 493 |
+
|
| 494 |
+
if st.sidebar.button("Generate Documentation"):
|
| 495 |
+
documentation = generate_documentation(optimized_code)
|
| 496 |
+
st.sidebar.subheader("Generated Documentation")
|
| 497 |
+
st.sidebar.write(documentation)
|
| 498 |
+
|
| 499 |
+
# Add more advanced features
|
| 500 |
+
def perform_security_analysis(code):
|
| 501 |
+
"""Perform a basic security analysis on the given code."""
|
| 502 |
+
security_analysis = generate_response(f"Perform a security analysis on the following code and suggest improvements:\n\n{code}")
|
| 503 |
+
return security_analysis
|
| 504 |
+
|
| 505 |
+
def generate_api_documentation(code):
|
| 506 |
+
"""Generate API documentation for the given code."""
|
| 507 |
+
api_docs = generate_response(f"Generate API documentation for the following code:\n\n{code}")
|
| 508 |
+
return api_docs
|
| 509 |
+
|
| 510 |
+
def suggest_design_patterns(code):
|
| 511 |
+
"""Suggest appropriate design patterns for the given code."""
|
| 512 |
+
design_patterns = generate_response(f"Suggest appropriate design patterns for the following code:\n\n{code}")
|
| 513 |
+
return design_patterns
|
| 514 |
+
|
| 515 |
+
# Add these new functions to the Streamlit UI
|
| 516 |
+
if task_type == "Code Generation":
|
| 517 |
+
st.sidebar.header("Advanced Code Analysis")
|
| 518 |
+
if st.sidebar.button("Security Analysis"):
|
| 519 |
+
security_analysis = perform_security_analysis(optimized_code)
|
| 520 |
+
st.sidebar.subheader("Security Analysis")
|
| 521 |
+
st.sidebar.write(security_analysis)
|
| 522 |
+
|
| 523 |
+
if st.sidebar.button("Generate API Documentation"):
|
| 524 |
+
api_docs = generate_api_documentation(optimized_code)
|
| 525 |
+
st.sidebar.subheader("API Documentation")
|
| 526 |
+
st.sidebar.write(api_docs)
|
| 527 |
+
|
| 528 |
+
if st.sidebar.button("Suggest Design Patterns"):
|
| 529 |
+
design_patterns = suggest_design_patterns(optimized_code)
|
| 530 |
+
st.sidebar.subheader("Suggested Design Patterns")
|
| 531 |
+
st.sidebar.write(design_patterns)
|
| 532 |
+
|
| 533 |
+
# Add a feature to generate a complete project structure
|
| 534 |
+
def generate_project_structure(project_description):
|
| 535 |
+
"""Generate a complete project structure based on the given description."""
|
| 536 |
+
project_structure = generate_response(f"Generate a complete project structure for the following project description:\n\n{project_description}")
|
| 537 |
+
return project_structure
|
| 538 |
+
|
| 539 |
+
# Add this new function to the Streamlit UI
|
| 540 |
+
if st.sidebar.button("Generate Project Structure"):
|
| 541 |
+
project_description = st.sidebar.text_area("Enter project description:")
|
| 542 |
+
if project_description:
|
| 543 |
+
project_structure = generate_project_structure(project_description)
|
| 544 |
+
st.sidebar.subheader("Generated Project Structure")
|
| 545 |
+
st.sidebar.code(project_structure)
|
| 546 |
+
|
| 547 |
+
# Add a feature to suggest relevant libraries and frameworks
|
| 548 |
+
def suggest_libraries(code):
|
| 549 |
+
"""Suggest relevant libraries and frameworks for the given code."""
|
| 550 |
+
suggestions = generate_response(f"Suggest relevant libraries and frameworks for the following code:\n\n{code}")
|
| 551 |
+
return suggestions
|
| 552 |
+
|
| 553 |
+
# Add this new function to the Streamlit UI
|
| 554 |
+
if task_type == "Code Generation":
|
| 555 |
+
if st.sidebar.button("Suggest Libraries"):
|
| 556 |
+
library_suggestions = suggest_libraries(optimized_code)
|
| 557 |
+
st.sidebar.subheader("Suggested Libraries and Frameworks")
|
| 558 |
+
st.sidebar.write(library_suggestions)
|
| 559 |
+
|
| 560 |
+
# Add a feature to generate code in multiple programming languages
|
| 561 |
+
def translate_code(code, target_language):
|
| 562 |
+
"""Translate the given code to the specified target language."""
|
| 563 |
+
translated_code = generate_response(f"Translate the following code to {target_language}:\n\n{code}")
|
| 564 |
+
return translated_code
|
| 565 |
+
|
| 566 |
+
# Add this new function to the Streamlit UI
|
| 567 |
+
if task_type == "Code Generation":
|
| 568 |
+
target_language = st.sidebar.selectbox("Select target language for translation", ["Python", "JavaScript", "Java", "C++", "Go"])
|
| 569 |
+
if st.sidebar.button("Translate Code"):
|
| 570 |
+
translated_code = translate_code(optimized_code, target_language)
|
| 571 |
+
st.sidebar.subheader(f"Translated Code ({target_language})")
|
| 572 |
+
st.sidebar.code(translated_code)
|
| 573 |
+
|
| 574 |
+
# Add a feature to generate a README file for the project
|
| 575 |
+
def generate_readme(project_description, code):
|
| 576 |
+
"""Generate a README file for the project based on the description and code."""
|
| 577 |
+
readme_content = generate_response(f"Generate a README.md file for the following project:\n\nDescription: {project_description}\n\nCode:\n{code}")
|
| 578 |
+
return readme_content
|
| 579 |
+
|
| 580 |
+
# Add this new function to the Streamlit UI
|
| 581 |
+
if task_type == "Code Generation":
|
| 582 |
+
if st.sidebar.button("Generate README"):
|
| 583 |
+
project_description = st.sidebar.text_area("Enter project description:")
|
| 584 |
+
if project_description:
|
| 585 |
+
readme_content = generate_readme(project_description, optimized_code)
|
| 586 |
+
st.sidebar.subheader("Generated README.md")
|
| 587 |
+
st.sidebar.markdown(readme_content)
|
| 588 |
+
|
| 589 |
+
# Add a feature to suggest code refactoring
|
| 590 |
+
def suggest_refactoring(code):
|
| 591 |
+
"""Suggest code refactoring improvements for the given code."""
|
| 592 |
+
refactoring_suggestions = generate_response(f"Suggest code refactoring improvements for the following code:\n\n{code}")
|
| 593 |
+
return refactoring_suggestions
|
| 594 |
+
|
| 595 |
+
# Add this new function to the Streamlit UI
|
| 596 |
+
if task_type == "Code Generation":
|
| 597 |
+
if st.sidebar.button("Suggest Refactoring"):
|
| 598 |
+
refactoring_suggestions = suggest_refactoring(optimized_code)
|
| 599 |
+
st.sidebar.subheader("Refactoring Suggestions")
|
| 600 |
+
st.sidebar.write(refactoring_suggestions)
|
| 601 |
+
|
| 602 |
+
# Add a feature to generate sample test data
|
| 603 |
+
def generate_test_data(code):
|
| 604 |
+
"""Generate sample test data for the given code."""
|
| 605 |
+
test_data = generate_response(f"Generate sample test data for the following code:\n\n{code}")
|
| 606 |
+
return test_data
|
| 607 |
+
|
| 608 |
+
# Add this new function to the Streamlit UI
|
| 609 |
+
if task_type == "Code Generation":
|
| 610 |
+
if st.sidebar.button("Generate Test Data"):
|
| 611 |
+
test_data = generate_test_data(optimized_code)
|
| 612 |
+
st.sidebar.subheader("Generated Test Data")
|
| 613 |
+
st.sidebar.code(test_data)
|
| 614 |
+
|
| 615 |
+
# Main execution
|
| 616 |
+
if __name__ == "__main__":
|
| 617 |
+
st.sidebar.header("About")
|
| 618 |
+
st.sidebar.info("This Ultra AI Code Assistant is powered by advanced AI models and incorporates expertise across multiple domains including software development, machine learning, data analysis, and more.")
|
| 619 |
+
|
| 620 |
+
st.sidebar.header("Feedback")
|
| 621 |
+
feedback = st.sidebar.text_area("Please provide any feedback or suggestions:")
|
| 622 |
+
if st.sidebar.button("Submit Feedback"):
|
| 623 |
+
# Here you would typically send this feedback to a database or email
|
| 624 |
+
st.sidebar.success("Thank you for your feedback!")
|