Algorithmvoice / app.py
Artificial-superintelligence's picture
Update app.py
f034b93 verified
raw
history blame
5.87 kB
import streamlit as st
import librosa
import soundfile as sf
import numpy as np
import scipy.signal as signal
from scipy.io import wavfile
from io import BytesIO
import tempfile
def modify_formants(y, sr, formant_shift_factor=1.2):
# Get the power spectrum
D = librosa.stft(y)
S = np.abs(D)
# Use frame-based processing for LPC
frame_length = 2048
hop_length = 512
frames = librosa.util.frame(y, frame_length=frame_length, hop_length=hop_length)
# Process each frame
modified_frames = []
for frame in frames.T:
# Calculate LPC coefficients
a = librosa.lpc(frame, order=12)
# Shift formants
new_a = np.zeros_like(a)
new_a[0] = a[0]
for i in range(1, len(a)):
new_a[i] = a[i] * (formant_shift_factor ** i)
# Apply modified LPC filter
modified_frame = signal.lfilter([1], new_a, frame)
modified_frames.append(modified_frame)
# Reconstruct the signal
y_formant = np.concatenate([frame[:hop_length] for frame in modified_frames[:-1]] +
[modified_frames[-1]])
return librosa.util.normalize(y_formant)
def enhance_harmonics(y, sr):
# Extract harmonics using harmonic-percussive source separation
y_harmonic = librosa.effects.hpss(y)[0]
# Enhance the harmonics
y_enhanced = y_harmonic * 1.2 + y * 0.3
return librosa.util.normalize(y_enhanced)
def process_audio_advanced(audio_file, settings):
# Load audio
y, sr = librosa.load(audio_file)
# Pitch shifting with formant preservation
y_shifted = librosa.effects.pitch_shift(
y,
sr=sr,
n_steps=settings['pitch_shift']
)
# Modify formants
y_formant = modify_formants(
y_shifted,
sr,
settings['formant_shift']
)
# Enhance harmonics
y_harmonic = enhance_harmonics(y_formant, sr)
# Apply vocal tract length modification through resampling
y_vtln = librosa.effects.time_stretch(
y_harmonic,
rate=settings['vtln_factor']
)
# Smooth the output
y_smooth = signal.savgol_filter(y_vtln, 1001, 2)
# Final normalization
y_final = librosa.util.normalize(y_smooth)
return y_final, sr
def create_voice_preset(preset_name):
presets = {
'Young Female': {
'pitch_shift': 8.0,
'formant_shift': 1.3,
'vtln_factor': 1.1,
'breathiness': 0.3
},
'Mature Female': {
'pitch_shift': 6.0,
'formant_shift': 1.2,
'vtln_factor': 1.05,
'breathiness': 0.2
},
'Soft Female': {
'pitch_shift': 7.0,
'formant_shift': 1.25,
'vtln_factor': 1.15,
'breathiness': 0.4
}
}
return presets.get(preset_name)
def add_breathiness(y, sr, amount=0.3):
# Generate breath noise
noise = np.random.normal(0, 0.01, len(y))
noise_filtered = signal.lfilter([1], [1, -0.98], noise)
# Mix with original signal
y_breathy = y * (1 - amount) + noise_filtered * amount
return librosa.util.normalize(y_breathy)
st.title("Advanced Female Voice Converter")
# File uploader
uploaded_file = st.file_uploader("Upload an audio file", type=['wav', 'mp3'])
if uploaded_file is not None:
# Save uploaded file temporarily
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
tmp_path = tmp_file.name
# Voice preset selector
preset_name = st.selectbox(
"Select Voice Preset",
['Young Female', 'Mature Female', 'Soft Female', 'Custom']
)
if preset_name == 'Custom':
settings = {
'pitch_shift': st.slider("Pitch Shift", 0.0, 12.0, 8.0, 0.5),
'formant_shift': st.slider("Formant Shift", 1.0, 1.5, 1.2, 0.05),
'vtln_factor': st.slider("Vocal Tract Length", 0.9, 1.2, 1.1, 0.05),
'breathiness': st.slider("Breathiness", 0.0, 1.0, 0.3, 0.1)
}
else:
settings = create_voice_preset(preset_name)
if st.button("Convert Voice"):
with st.spinner("Processing audio..."):
try:
# Process audio
processed_audio, sr = process_audio_advanced(tmp_path, settings)
# Add breathiness
processed_audio = add_breathiness(
processed_audio,
sr,
settings['breathiness']
)
# Save to buffer
buffer = BytesIO()
sf.write(buffer, processed_audio, sr, format='WAV')
# Display audio player
st.audio(buffer, format='audio/wav')
# Download button
st.download_button(
label="Download Converted Audio",
data=buffer,
file_name="female_voice_converted.wav",
mime="audio/wav"
)
except Exception as e:
st.error(f"Error processing audio: {str(e)}")
st.markdown("""
### Voice Conversion Features:
- Pitch shifting with formant preservation
- Harmonic enhancement
- Vocal tract length modification
- Natural breathiness addition
- Multiple voice presets
- Custom parameter controls
### Tips for Best Results:
1. Start with a clear audio recording
2. Try different presets to find the best match
3. For custom settings:
- Pitch shift: 6-8 for natural female voice
- Formant shift: 1.1-1.3 for feminine resonance
- Vocal tract length: 1.05-1.15 for realistic results
- Breathiness: 0.2-0.4 for natural sound
""")