Update app.py
Browse files
app.py
CHANGED
@@ -2,16 +2,14 @@ import numpy as np
|
|
2 |
import pandas as pd
|
3 |
from sklearn.preprocessing import LabelEncoder
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
-
from tensorflow.keras.models import Sequential
|
6 |
-
from tensorflow.keras.layers import Dense,
|
7 |
from tensorflow.keras.optimizers import Adam
|
8 |
from tensorflow.keras.utils import to_categorical
|
9 |
-
from tensorflow.keras.callbacks import EarlyStopping
|
10 |
-
import tensorflow as tf
|
11 |
-
import optuna
|
12 |
import gradio as gr
|
13 |
|
14 |
-
#
|
15 |
data = [
|
16 |
"Double big 12", "Single big 11", "Single big 13", "Double big 12", "Double small 10",
|
17 |
"Double big 12", "Double big 12", "Single small 7", "Single small 5", "Single small 9",
|
@@ -19,127 +17,40 @@ data = [
|
|
19 |
"Double big 14", "Single big 17", "Triple 9", "Double small 6", "Single big 13",
|
20 |
"Double big 14", "Double small 8", "Double small 8", "Single big 13", "Single small 9",
|
21 |
"Double small 8", "Double small 8", "Single big 12", "Double small 8", "Double big 14",
|
22 |
-
"Double small 10", "Single big 13", "Single big 11", "Double big 14", "Double big 14"
|
23 |
-
"Double small", "Single big", "Double big", "Single small", "Single small",
|
24 |
-
"Double small", "Single small", "Single small", "Double small", "Double small",
|
25 |
-
"Double big", "Single big", "Triple", "Double big", "Single big", "Single big",
|
26 |
-
"Double small", "Single small", "Double big", "Double small", "Double big",
|
27 |
-
"Single small", "Single big", "Double small", "Double big", "Double big",
|
28 |
-
"Double small", "Single big", "Double big", "Triple", "Single big", "Double small",
|
29 |
-
"Single big", "Single small", "Double small", "Single big", "Single big",
|
30 |
-
"Single big", "Double small", "Double small", "Single big", "Single small",
|
31 |
-
"Single big", "Single small", "Single small", "Double small", "Single small",
|
32 |
-
"Single big"
|
33 |
]
|
34 |
|
35 |
-
# Counting the data points
|
36 |
-
num_data_points = len(data)
|
37 |
-
print(f'Total number of data points: {num_data_points}')
|
38 |
-
|
39 |
# Encoding the labels
|
40 |
encoder = LabelEncoder()
|
41 |
encoded_data = encoder.fit_transform(data)
|
42 |
|
43 |
# Create sequences
|
44 |
-
sequence_length =
|
45 |
X, y = [], []
|
46 |
for i in range(len(encoded_data) - sequence_length):
|
47 |
X.append(encoded_data[i:i + sequence_length])
|
48 |
y.append(encoded_data[i + sequence_length])
|
49 |
|
50 |
X = np.array(X)
|
51 |
-
y = to_categorical(
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
Dense(ff_dim, activation="relu"),
|
62 |
-
Dense(embed_dim),
|
63 |
-
])
|
64 |
-
self.layernorm1 = LayerNormalization(epsilon=1e-6)
|
65 |
-
self.layernorm2 = LayerNormalization(epsilon=1e-6)
|
66 |
-
self.dropout1 = Dropout(rate)
|
67 |
-
self.dropout2 = Dropout(rate)
|
68 |
-
|
69 |
-
def call(self, inputs, training=False):
|
70 |
-
attn_output = self.att(inputs, inputs)
|
71 |
-
attn_output = self.dropout1(attn_output, training=training)
|
72 |
-
out1 = self.layernorm1(inputs + attn_output)
|
73 |
-
ffn_output = self.ffn(out1)
|
74 |
-
ffn_output = self.dropout2(ffn_output, training=training)
|
75 |
-
return self.layernorm2(out1 + ffn_output)
|
76 |
-
|
77 |
-
def build_model(trial):
|
78 |
-
embed_dim = trial.suggest_int('embed_dim', 64, 256, step=32)
|
79 |
-
num_heads = trial.suggest_int('num_heads', 2, 8, step=2)
|
80 |
-
ff_dim = trial.suggest_int('ff_dim', 128, 512, step=64)
|
81 |
-
rate = trial.suggest_float('dropout', 0.1, 0.5, step=0.1)
|
82 |
-
num_transformer_blocks = trial.suggest_int('num_transformer_blocks', 1, 3)
|
83 |
-
|
84 |
-
inputs = Input(shape=(sequence_length,))
|
85 |
-
embedding_layer = Embedding(input_dim=len(encoder.classes_), output_dim=embed_dim)
|
86 |
-
x = embedding_layer(inputs)
|
87 |
-
|
88 |
-
for _ in range(num_transformer_blocks):
|
89 |
-
transformer_block = TransformerBlock(embed_dim, num_heads, ff_dim, rate)
|
90 |
-
x = transformer_block(x)
|
91 |
-
|
92 |
-
x = Conv1D(128, 3, activation='relu')(x)
|
93 |
-
x = Bidirectional(LSTM(128, return_sequences=True))(x)
|
94 |
-
x = GlobalAveragePooling1D()(x)
|
95 |
-
x = Dropout(rate)(x)
|
96 |
-
x = Dense(ff_dim, activation="relu")(x)
|
97 |
-
x = Dropout(rate)(x)
|
98 |
-
outputs = Dense(len(encoder.classes_), activation="softmax")(x)
|
99 |
-
|
100 |
-
model = Model(inputs=inputs, outputs=outputs)
|
101 |
-
|
102 |
-
optimizer = Adam(learning_rate=trial.suggest_float('lr', 1e-5, 1e-2, log=True))
|
103 |
-
model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
|
104 |
-
|
105 |
return model
|
106 |
|
107 |
-
def objective(trial):
|
108 |
-
model = build_model(trial)
|
109 |
-
|
110 |
-
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
|
111 |
-
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=1e-6)
|
112 |
-
|
113 |
-
history = model.fit(
|
114 |
-
X, y,
|
115 |
-
epochs=100,
|
116 |
-
batch_size=64,
|
117 |
-
validation_split=0.2,
|
118 |
-
callbacks=[early_stopping, reduce_lr],
|
119 |
-
verbose=0
|
120 |
-
)
|
121 |
-
|
122 |
-
val_accuracy = max(history.history['val_accuracy'])
|
123 |
-
return val_accuracy
|
124 |
-
|
125 |
# Initialize the model
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
early_stopping = EarlyStopping(monitor='val_loss', patience=20, restore_best_weights=True)
|
133 |
-
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=10, min_lr=1e-6)
|
134 |
-
|
135 |
-
history = best_model.fit(
|
136 |
-
X, y,
|
137 |
-
epochs=500,
|
138 |
-
batch_size=64,
|
139 |
-
validation_split=0.2,
|
140 |
-
callbacks=[early_stopping, reduce_lr],
|
141 |
-
verbose=2
|
142 |
-
)
|
143 |
|
144 |
def predict_next(model, data, sequence_length, encoder):
|
145 |
last_sequence = data[-sequence_length:]
|
@@ -150,28 +61,15 @@ def predict_next(model, data, sequence_length, encoder):
|
|
150 |
|
151 |
def update_data(data, new_outcome):
|
152 |
data.append(new_outcome)
|
153 |
-
if len(data) > sequence_length:
|
154 |
-
data.pop(0)
|
155 |
return data
|
156 |
|
157 |
def retrain_model(model, X, y, epochs=10):
|
158 |
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
159 |
-
|
160 |
-
|
161 |
-
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
|
162 |
-
|
163 |
-
model.fit(
|
164 |
-
X_train, y_train,
|
165 |
-
epochs=epochs,
|
166 |
-
batch_size=64,
|
167 |
-
validation_data=(X_val, y_val),
|
168 |
-
callbacks=[early_stopping, reduce_lr],
|
169 |
-
verbose=0
|
170 |
-
)
|
171 |
return model
|
172 |
|
173 |
def gradio_predict(outcome):
|
174 |
-
global data,
|
175 |
|
176 |
if outcome not in encoder.classes_:
|
177 |
return "Invalid outcome. Please try again."
|
@@ -181,11 +79,11 @@ def gradio_predict(outcome):
|
|
181 |
if len(data) < sequence_length:
|
182 |
return "Not enough data to make a prediction."
|
183 |
|
184 |
-
predicted_next = predict_next(
|
185 |
return f'Predicted next outcome: {predicted_next}'
|
186 |
|
187 |
def gradio_update(actual_next):
|
188 |
-
global data, X, y,
|
189 |
|
190 |
if actual_next not in encoder.classes_:
|
191 |
return "Invalid outcome. Please try again."
|
@@ -196,20 +94,23 @@ def gradio_update(actual_next):
|
|
196 |
return "Not enough data to update the model."
|
197 |
|
198 |
# Update X and y
|
199 |
-
new_X =
|
200 |
-
new_y =
|
|
|
|
|
|
|
201 |
|
202 |
-
X = np.
|
203 |
-
y =
|
204 |
|
205 |
# Retrain the model
|
206 |
-
|
207 |
|
208 |
return "Model updated with new data."
|
209 |
|
210 |
# Gradio interface
|
211 |
with gr.Blocks() as demo:
|
212 |
-
gr.Markdown("## Outcome Prediction
|
213 |
with gr.Row():
|
214 |
outcome_input = gr.Textbox(label="Current Outcome")
|
215 |
predict_button = gr.Button("Predict Next")
|
|
|
2 |
import pandas as pd
|
3 |
from sklearn.preprocessing import LabelEncoder
|
4 |
from sklearn.model_selection import train_test_split
|
5 |
+
from tensorflow.keras.models import Sequential
|
6 |
+
from tensorflow.keras.layers import Dense, LSTM, Embedding
|
7 |
from tensorflow.keras.optimizers import Adam
|
8 |
from tensorflow.keras.utils import to_categorical
|
9 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
|
|
|
|
10 |
import gradio as gr
|
11 |
|
12 |
+
# Initial data set
|
13 |
data = [
|
14 |
"Double big 12", "Single big 11", "Single big 13", "Double big 12", "Double small 10",
|
15 |
"Double big 12", "Double big 12", "Single small 7", "Single small 5", "Single small 9",
|
|
|
17 |
"Double big 14", "Single big 17", "Triple 9", "Double small 6", "Single big 13",
|
18 |
"Double big 14", "Double small 8", "Double small 8", "Single big 13", "Single small 9",
|
19 |
"Double small 8", "Double small 8", "Single big 12", "Double small 8", "Double big 14",
|
20 |
+
"Double small 10", "Single big 13", "Single big 11", "Double big 14", "Double big 14"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
]
|
22 |
|
|
|
|
|
|
|
|
|
23 |
# Encoding the labels
|
24 |
encoder = LabelEncoder()
|
25 |
encoded_data = encoder.fit_transform(data)
|
26 |
|
27 |
# Create sequences
|
28 |
+
sequence_length = 5
|
29 |
X, y = [], []
|
30 |
for i in range(len(encoded_data) - sequence_length):
|
31 |
X.append(encoded_data[i:i + sequence_length])
|
32 |
y.append(encoded_data[i + sequence_length])
|
33 |
|
34 |
X = np.array(X)
|
35 |
+
y = to_categorical(y, num_classes=len(encoder.classes_))
|
36 |
+
|
37 |
+
# Build the model
|
38 |
+
def build_model(vocab_size, sequence_length):
|
39 |
+
model = Sequential([
|
40 |
+
Embedding(vocab_size, 50, input_length=sequence_length),
|
41 |
+
LSTM(100),
|
42 |
+
Dense(vocab_size, activation='softmax')
|
43 |
+
])
|
44 |
+
model.compile(loss='categorical_crossentropy', optimizer=Adam(learning_rate=0.001), metrics=['accuracy'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return model
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Initialize the model
|
48 |
+
vocab_size = len(encoder.classes_)
|
49 |
+
model = build_model(vocab_size, sequence_length)
|
50 |
+
|
51 |
+
# Train the model
|
52 |
+
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
|
53 |
+
history = model.fit(X, y, epochs=100, validation_split=0.2, callbacks=[early_stopping], verbose=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
def predict_next(model, data, sequence_length, encoder):
|
56 |
last_sequence = data[-sequence_length:]
|
|
|
61 |
|
62 |
def update_data(data, new_outcome):
|
63 |
data.append(new_outcome)
|
|
|
|
|
64 |
return data
|
65 |
|
66 |
def retrain_model(model, X, y, epochs=10):
|
67 |
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
68 |
+
model.fit(X, y, epochs=epochs, validation_split=0.2, callbacks=[early_stopping], verbose=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return model
|
70 |
|
71 |
def gradio_predict(outcome):
|
72 |
+
global data, model
|
73 |
|
74 |
if outcome not in encoder.classes_:
|
75 |
return "Invalid outcome. Please try again."
|
|
|
79 |
if len(data) < sequence_length:
|
80 |
return "Not enough data to make a prediction."
|
81 |
|
82 |
+
predicted_next = predict_next(model, data, sequence_length, encoder)
|
83 |
return f'Predicted next outcome: {predicted_next}'
|
84 |
|
85 |
def gradio_update(actual_next):
|
86 |
+
global data, X, y, model
|
87 |
|
88 |
if actual_next not in encoder.classes_:
|
89 |
return "Invalid outcome. Please try again."
|
|
|
94 |
return "Not enough data to update the model."
|
95 |
|
96 |
# Update X and y
|
97 |
+
new_X = []
|
98 |
+
new_y = []
|
99 |
+
for i in range(len(data) - sequence_length):
|
100 |
+
new_X.append(encoder.transform(data[i:i + sequence_length]))
|
101 |
+
new_y.append(encoder.transform([data[i + sequence_length]])[0])
|
102 |
|
103 |
+
X = np.array(new_X)
|
104 |
+
y = to_categorical(new_y, num_classes=len(encoder.classes_))
|
105 |
|
106 |
# Retrain the model
|
107 |
+
model = retrain_model(model, X, y, epochs=10)
|
108 |
|
109 |
return "Model updated with new data."
|
110 |
|
111 |
# Gradio interface
|
112 |
with gr.Blocks() as demo:
|
113 |
+
gr.Markdown("## Outcome Prediction Model")
|
114 |
with gr.Row():
|
115 |
outcome_input = gr.Textbox(label="Current Outcome")
|
116 |
predict_button = gr.Button("Predict Next")
|