m-ric's picture
m-ric HF staff
Numerous fixes
e76df21
raw
history blame
10.8 kB
import argparse
import json
import os
import threading
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from pathlib import Path
from typing import List, Optional
import datasets
import pandas as pd
from dotenv import load_dotenv
from huggingface_hub import login
import gradio as gr
from scripts.reformulator import prepare_response
from scripts.run_agents import (
get_single_file_description,
get_zip_description,
)
from scripts.text_inspector_tool import TextInspectorTool
from scripts.text_web_browser import (
ArchiveSearchTool,
FinderTool,
FindNextTool,
PageDownTool,
PageUpTool,
SearchInformationTool,
SimpleTextBrowser,
VisitTool,
)
from scripts.visual_qa import visualizer
from tqdm import tqdm
from smolagents import (
MANAGED_AGENT_PROMPT,
CodeAgent,
HfApiModel,
LiteLLMModel,
Model,
ToolCallingAgent,
)
from smolagents.gradio_ui import pull_messages_from_step, handle_agent_output_types
AUTHORIZED_IMPORTS = [
"requests",
"zipfile",
"os",
"pandas",
"numpy",
"sympy",
"json",
"bs4",
"pubchempy",
"xml",
"yahoo_finance",
"Bio",
"sklearn",
"scipy",
"pydub",
"io",
"PIL",
"chess",
"PyPDF2",
"pptx",
"torch",
"datetime",
"fractions",
"csv",
]
load_dotenv(override=True)
login(os.getenv("HF_TOKEN"))
append_answer_lock = threading.Lock()
SET = "validation"
custom_role_conversions = {"tool-call": "assistant", "tool-response": "user"}
### LOAD EVALUATION DATASET
eval_ds = datasets.load_dataset("gaia-benchmark/GAIA", "2023_all")[SET]
eval_ds = eval_ds.rename_columns({"Question": "question", "Final answer": "true_answer", "Level": "task"})
def preprocess_file_paths(row):
if len(row["file_name"]) > 0:
row["file_name"] = f"data/gaia/{SET}/" + row["file_name"]
return row
eval_ds = eval_ds.map(preprocess_file_paths)
eval_df = pd.DataFrame(eval_ds)
print("Loaded evaluation dataset:")
print(eval_df["task"].value_counts())
user_agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
BROWSER_CONFIG = {
"viewport_size": 1024 * 5,
"downloads_folder": "downloads_folder",
"request_kwargs": {
"headers": {"User-Agent": user_agent},
"timeout": 300,
},
"serpapi_key": os.getenv("SERPAPI_API_KEY"),
}
os.makedirs(f"./{BROWSER_CONFIG['downloads_folder']}", exist_ok=True)
model = LiteLLMModel(
"gpt-4o",
custom_role_conversions=custom_role_conversions,
api_key=os.getenv("OPENAI_API_KEY")
)
text_limit = 20000
ti_tool = TextInspectorTool(model, text_limit)
browser = SimpleTextBrowser(**BROWSER_CONFIG)
WEB_TOOLS = [
SearchInformationTool(browser),
VisitTool(browser),
PageUpTool(browser),
PageDownTool(browser),
FinderTool(browser),
FindNextTool(browser),
ArchiveSearchTool(browser),
TextInspectorTool(model, text_limit),
]
text_webbrowser_agent = ToolCallingAgent(
model=model,
tools=WEB_TOOLS,
max_steps=20,
verbosity_level=2,
planning_interval=4,
name="search_agent",
description="""A team member that will search the internet to answer your question.
Ask him for all your questions that require browsing the web.
Provide him as much context as possible, in particular if you need to search on a specific timeframe!
And don't hesitate to provide him with a complex search task, like finding a difference between two webpages.
Your request must be a real sentence, not a google search! Like "Find me this information (...)" rather than a few keywords.
""",
provide_run_summary=True,
managed_agent_prompt=MANAGED_AGENT_PROMPT
+ """You can navigate to .txt online files.
If a non-html page is in another format, especially .pdf or a Youtube video, use tool 'inspect_file_as_text' to inspect it.
Additionally, if after some searching you find out that you need more information to answer the question, you can use `final_answer` with your request for clarification as argument to request for more information.""",
)
agent = CodeAgent(
model=model,
tools=[visualizer, ti_tool],
max_steps=12,
verbosity_level=2,
additional_authorized_imports=AUTHORIZED_IMPORTS,
planning_interval=4,
managed_agents=[text_webbrowser_agent],
)
document_inspection_tool = TextInspectorTool(model, 20000)
# augmented_question = """You have one question to answer. It is paramount that you provide a correct answer.
# Give it all you can: I know for a fact that you have access to all the relevant tools to solve it and find the correct answer (the answer does exist). Failure or 'I cannot answer' or 'None found' will not be tolerated, success will be rewarded.
# Run verification steps if that's needed, you must make sure you find the correct answer!
# Here is the task:
# """ + example["question"]
# if example["file_name"]:
# prompt_use_files = "\n\nTo solve the task above, you will have to use this attached file:"
# prompt_use_files += get_single_file_description(
# example["file_name"], example["question"], visual_inspection_tool, document_inspection_tool
# )
# augmented_question += prompt_use_files
# final_result = agent.run(augmented_question)
def stream_to_gradio(
agent,
task: str,
reset_agent_memory: bool = False,
additional_args: Optional[dict] = None,
):
"""Runs an agent with the given task and streams the messages from the agent as gradio ChatMessages."""
for step_log in agent.run(task, stream=True, reset=reset_agent_memory, additional_args=additional_args):
for message in pull_messages_from_step(
step_log,
):
yield message
final_answer = step_log # Last log is the run's final_answer
final_answer = handle_agent_output_types(final_answer)
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
)
else:
yield gr.ChatMessage(role="assistant", content=f"**Final answer:** {str(final_answer)}")
class GradioUI:
"""A one-line interface to launch your agent in Gradio"""
def __init__(self, agent, file_upload_folder: str | None = None):
self.agent = agent
self.file_upload_folder = file_upload_folder
if self.file_upload_folder is not None:
if not os.path.exists(file_upload_folder):
os.mkdir(file_upload_folder)
def interact_with_agent(self, prompt, messages):
messages.append(gr.ChatMessage(role="user", content=prompt))
yield messages
for msg in stream_to_gradio(self.agent, task=prompt, reset_agent_memory=False):
messages.append(msg)
yield messages
yield messages
def upload_file(
self,
file,
file_uploads_log,
allowed_file_types=[
"application/pdf",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"text/plain",
],
):
"""
Handle file uploads, default allowed types are .pdf, .docx, and .txt
"""
if file is None:
return gr.Textbox("No file uploaded", visible=True), file_uploads_log
try:
mime_type, _ = mimetypes.guess_type(file.name)
except Exception as e:
return gr.Textbox(f"Error: {e}", visible=True), file_uploads_log
if mime_type not in allowed_file_types:
return gr.Textbox("File type disallowed", visible=True), file_uploads_log
# Sanitize file name
original_name = os.path.basename(file.name)
sanitized_name = re.sub(
r"[^\w\-.]", "_", original_name
) # Replace any non-alphanumeric, non-dash, or non-dot characters with underscores
type_to_ext = {}
for ext, t in mimetypes.types_map.items():
if t not in type_to_ext:
type_to_ext[t] = ext
# Ensure the extension correlates to the mime type
sanitized_name = sanitized_name.split(".")[:-1]
sanitized_name.append("" + type_to_ext[mime_type])
sanitized_name = "".join(sanitized_name)
# Save the uploaded file to the specified folder
file_path = os.path.join(self.file_upload_folder, os.path.basename(sanitized_name))
shutil.copy(file.name, file_path)
return gr.Textbox(f"File uploaded: {file_path}", visible=True), file_uploads_log + [file_path]
def log_user_message(self, text_input, file_uploads_log):
return (
text_input
+ (
f"\nYou have been provided with these files, which might be helpful or not: {file_uploads_log}"
if len(file_uploads_log) > 0
else ""
),
"",
)
def launch(self, **kwargs):
with gr.Blocks(fill_height=True) as demo:
stored_messages = gr.State([])
file_uploads_log = gr.State([])
chatbot = gr.Chatbot(
label="Agent",
type="messages",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/smolagents/mascot_smol.png",
),
resizeable=True,
scale=1,
)
# If an upload folder is provided, enable the upload feature
if self.file_upload_folder is not None:
upload_file = gr.File(label="Upload a file")
upload_status = gr.Textbox(label="Upload Status", interactive=False, visible=False)
upload_file.change(
self.upload_file,
[upload_file, file_uploads_log],
[upload_status, file_uploads_log],
)
text_input = gr.Textbox(lines=1, label="Chat Message")
text_input.submit(
self.log_user_message,
[text_input, file_uploads_log],
[stored_messages, text_input],
).then(self.interact_with_agent, [stored_messages, chatbot], [chatbot])
demo.launch(debug=True, share=True, **kwargs)
GradioUI(agent).launch()