Arpit-Bansal commited on
Commit
28e1a34
·
1 Parent(s): df0b0dd

Modified CustomChain, code-linting

Browse files
Files changed (1) hide show
  1. agent.py +5 -27
agent.py CHANGED
@@ -28,30 +28,6 @@ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", GEMINI_API_KEY=GEMINI_API
28
 
29
 
30
  print("Models initialized successfully.")
31
- def load_documents(directory):
32
- loader = DirectoryLoader(
33
- directory,
34
- glob="**/*.txt",
35
- loader_cls=TextLoader
36
- )
37
- documents = loader.load()
38
-
39
- docx_loader = DirectoryLoader(
40
- directory,
41
- glob="**/*.docx",
42
- loader_cls=UnstructuredWordDocumentLoader,
43
- loader_kwargs={"mode": "elements"}
44
- )
45
- documents.extend(docx_loader.load())
46
- print(f"Loaded {len(documents)} documents.")
47
- pdf_loader = DirectoryLoader(
48
- directory,
49
- glob="**/*.pdf",
50
- loader_cls=UnstructuredPDFLoader
51
- )
52
- documents.extend(pdf_loader.load())
53
- print(f"Loaded {len(documents)} documents.")
54
- return documents
55
 
56
  import os
57
  from dotenv import load_dotenv
@@ -200,7 +176,7 @@ def create_health_agent(vector_store):
200
 
201
  @property
202
  def input_keys(self):
203
- return ['query', 'previous_conversation']
204
 
205
  @property
206
  def output_keys(self):
@@ -209,6 +185,7 @@ def create_health_agent(vector_store):
209
  def _call(self, inputs):
210
  query = inputs['query']
211
  previous_conversation = inputs.get('previous_conversation', '')
 
212
 
213
  # Retrieve relevant documents
214
  docs = retriever.get_relevant_documents(query)
@@ -218,7 +195,8 @@ def create_health_agent(vector_store):
218
  llm_inputs = {
219
  'context': context,
220
  'question': query,
221
- 'previous_conversation': previous_conversation
 
222
  }
223
 
224
  # Generate response
@@ -229,7 +207,7 @@ def create_health_agent(vector_store):
229
  llm_chain = LLMChain(llm=llm, prompt=PROMPT)
230
 
231
  # Create and return the custom chain
232
- return CustomRetrievalQA(retriever=retriever, llm_chain=llm_chain)
233
 
234
 
235
  def agent_with_db():
 
28
 
29
 
30
  print("Models initialized successfully.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  import os
33
  from dotenv import load_dotenv
 
176
 
177
  @property
178
  def input_keys(self):
179
+ return ['query', 'previous_conversation', 'user_data']
180
 
181
  @property
182
  def output_keys(self):
 
185
  def _call(self, inputs):
186
  query = inputs['query']
187
  previous_conversation = inputs.get('previous_conversation', '')
188
+ user_data = inputs.get('user_data', '')
189
 
190
  # Retrieve relevant documents
191
  docs = retriever.get_relevant_documents(query)
 
195
  llm_inputs = {
196
  'context': context,
197
  'question': query,
198
+ 'previous_conversation': previous_conversation,
199
+ 'user_data': user_data
200
  }
201
 
202
  # Generate response
 
207
  llm_chain = LLMChain(llm=llm, prompt=PROMPT)
208
 
209
  # Create and return the custom chain
210
+ return CustomRetrievalQA(retriever=retriever, llm_chain=llm_chain, user_data=None)
211
 
212
 
213
  def agent_with_db():