Commit
·
b009852
1
Parent(s):
3fc6785
Push Files
Browse files- .gitignore +3 -0
- __init__.py +2 -0
- embedding_generator.py +86 -0
- main.py +49 -0
- requirements.txt +4 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
.env
|
3 |
+
__pycache__/
|
__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append("..")
|
embedding_generator.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from huggingface_hub import login, from_pretrained_keras
|
2 |
+
|
3 |
+
import os
|
4 |
+
import glob
|
5 |
+
import time
|
6 |
+
import h5py
|
7 |
+
import numpy as np
|
8 |
+
# import pandas as pd
|
9 |
+
from PIL import Image
|
10 |
+
from tqdm import tqdm
|
11 |
+
import tensorflow as tf
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
hf_token = os.getenv("HF_TOKEN")
|
17 |
+
if hf_token is None:
|
18 |
+
raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
19 |
+
login(token=hf_token)
|
20 |
+
|
21 |
+
def load_model():
|
22 |
+
"""Load PathFoundation model from Hugging Face"""
|
23 |
+
print("Loading PathFoundation model...")
|
24 |
+
model = from_pretrained_keras("google/path-foundation")
|
25 |
+
infer = model.signatures["serving_default"]
|
26 |
+
print("Model loaded!")
|
27 |
+
return infer
|
28 |
+
|
29 |
+
def load_model():
|
30 |
+
"""Load PathFoundation model from Hugging Face"""
|
31 |
+
print("Loading PathFoundation model...")
|
32 |
+
import tensorflow as tf
|
33 |
+
import keras
|
34 |
+
from huggingface_hub import snapshot_download
|
35 |
+
|
36 |
+
# Download the model from HuggingFace
|
37 |
+
model_path = snapshot_download(repo_id="google/path-foundation")
|
38 |
+
|
39 |
+
# Load as TFSMLayer
|
40 |
+
model = keras.layers.TFSMLayer(
|
41 |
+
model_path,
|
42 |
+
call_endpoint='serving_default'
|
43 |
+
)
|
44 |
+
print("Model loaded!")
|
45 |
+
return model
|
46 |
+
|
47 |
+
|
48 |
+
def process_image(image_input, infer_function):
|
49 |
+
"""Process a single image and get embedding
|
50 |
+
|
51 |
+
Args:
|
52 |
+
image_input: Either a file path (str) or image data (bytes/BytesIO/numpy array)
|
53 |
+
infer_function: The model inference function
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
Embedding vector or None if processing fails
|
57 |
+
"""
|
58 |
+
try:
|
59 |
+
# Handle different input types
|
60 |
+
if isinstance(image_input, str):
|
61 |
+
# It's a file path
|
62 |
+
img = Image.open(image_input).convert('RGB')
|
63 |
+
elif isinstance(image_input, bytes) or hasattr(image_input, 'read'):
|
64 |
+
# It's image data from frontend (bytes or BytesIO)
|
65 |
+
img = Image.open(image_input).convert('RGB')
|
66 |
+
elif isinstance(image_input, np.ndarray):
|
67 |
+
# It's already a numpy array
|
68 |
+
img = Image.fromarray(image_input.astype('uint8')).convert('RGB')
|
69 |
+
else:
|
70 |
+
raise ValueError(f"Unsupported image input type: {type(image_input)}")
|
71 |
+
|
72 |
+
# Resize to 224x224 if needed
|
73 |
+
if img.size != (224, 224):
|
74 |
+
img = img.resize((224, 224))
|
75 |
+
# Convert to tensor and normalize
|
76 |
+
tensor = tf.cast(tf.expand_dims(np.array(img), axis=0), tf.float32) / 255.0
|
77 |
+
|
78 |
+
# Get embedding
|
79 |
+
embeddings = infer_function(tf.constant(tensor))
|
80 |
+
|
81 |
+
embedding_vector = embeddings['output_0'].numpy().flatten()
|
82 |
+
|
83 |
+
return embedding_vector
|
84 |
+
except Exception as e:
|
85 |
+
print(f"Error processing image: {e}")
|
86 |
+
return None
|
main.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
2 |
+
from fastapi.responses import JSONResponse
|
3 |
+
import uvicorn
|
4 |
+
from typing import List
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
from embedding_generator import load_model, process_image
|
10 |
+
|
11 |
+
app = FastAPI(title="Medical Image Embedding Generator")
|
12 |
+
|
13 |
+
|
14 |
+
global infer
|
15 |
+
infer = load_model()
|
16 |
+
|
17 |
+
|
18 |
+
@app.post("/embeddings")
|
19 |
+
async def generate_embeddings(file: UploadFile = File(...)):
|
20 |
+
"""
|
21 |
+
Upload a medical image (JPEG, PNG, TIFF) and get embeddings
|
22 |
+
"""
|
23 |
+
content_type = file.content_type
|
24 |
+
if not (content_type.startswith("image/") or
|
25 |
+
file.filename.endswith((".tif", ".tiff", ".jpg", ".jpeg", ".png", ".bmp"))):
|
26 |
+
raise HTTPException(status_code=400, detail="File must be an image (JPEG, PNG, BMP) or TIFF format")
|
27 |
+
|
28 |
+
try:
|
29 |
+
# Read the file content
|
30 |
+
embedding = process_image(file.file, infer)
|
31 |
+
if embedding is None:
|
32 |
+
raise HTTPException(status_code=500, detail="Error processing image")
|
33 |
+
|
34 |
+
return_content = {
|
35 |
+
"filename": file.filename,
|
36 |
+
"embedding": embedding.tolist(),
|
37 |
+
}
|
38 |
+
|
39 |
+
return JSONResponse(content=return_content)
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
|
43 |
+
|
44 |
+
@app.get("/")
|
45 |
+
async def root():
|
46 |
+
return {"message": "Welcome to Medical Image Embedding Generator API. Use /embeddings endpoint to upload images."}
|
47 |
+
|
48 |
+
if __name__ == "__main__":
|
49 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tf-nightly[and-cuda]
|
2 |
+
python-dotenv
|
3 |
+
pillow
|
4 |
+
huggingface-hub
|