ArneBinder's picture
simple emebdding calculation
ee9934e verified
raw
history blame
14.3 kB
import json
import logging
from functools import partial
from typing import Optional, Tuple
import gradio as gr
from pie_modules.document.processing import tokenize_document
from pie_modules.documents import TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pie_modules.models import * # noqa: F403
from pie_modules.taskmodules import * # noqa: F403
from pytorch_ie import Pipeline
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pytorch_ie.models import * # noqa: F403
from pytorch_ie.taskmodules import * # noqa: F403
from rendering_utils import render_displacy, render_pretty_table
from transformers import AutoModel, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer
logger = logging.getLogger(__name__)
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"
def embed_text_annotations(
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
model: PreTrainedModel,
tokenizer: PreTrainedTokenizer,
text_layer_name: str,
) -> dict:
# to not modify the original document
document = document.copy()
# tokenize_document does not yet consider predictions, so we need to add them manually
document[text_layer_name].extend(document[text_layer_name].predictions.clear())
added_annotations = []
# TODO: set return_overflowing_tokens=True and max_length=...?
tokenizer_kwargs = {}
tokenized_documents = tokenize_document(
document,
tokenizer=tokenizer,
result_document_type=TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions,
partition_layer="labeled_partitions",
added_annotations=added_annotations,
**tokenizer_kwargs,
)
# just tokenize again to get tensors in the correct format for the model
model_inputs = tokenizer(document.text, return_tensors="pt", **tokenizer_kwargs)
assert len(model_inputs.encodings) == len(tokenized_documents)
model_output = model(**model_inputs)
# get embeddings for all text annotations
embeddings = {}
for batch_idx in range(len(model_output.last_hidden_state)):
text2tok_ann = added_annotations[batch_idx][text_layer_name]
tok2text_ann = {v: k for k, v in text2tok_ann.items()}
for tok_ann in tokenized_documents[batch_idx].labeled_spans:
# skip "empty" annotations
if tok_ann.start == tok_ann.end:
continue
# use the max pooling strategy to get a single embedding for the annotation text
embedding = model_output.last_hidden_state[batch_idx, tok_ann.start : tok_ann.end].max(
dim=0
)[0]
text_ann = tok2text_ann[tok_ann]
if text_ann in embeddings:
logger.warning(
f"Overwriting embedding for annotation '{text_ann}' (do you use striding?)"
)
embeddings[text_ann] = embedding
return embeddings
def predict(
text: str,
pipeline: Pipeline,
embedding_model: Optional[PreTrainedModel] = None,
embedding_tokenizer: Optional[PreTrainedTokenizer] = None,
) -> Tuple[dict, str]:
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(text=text)
# add single partition from the whole text (the model only considers text in partitions)
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
# execute prediction pipeline
pipeline(document)
document_dict = document.asdict()
if embedding_model is not None and embedding_tokenizer is not None:
adu_embeddings = embed_text_annotations(
document=document,
model=embedding_model,
tokenizer=embedding_tokenizer,
text_layer_name="labeled_spans",
)
# convert keys to str because JSON keys must be strings
adu_embeddings_dict = {str(k._id): v.detach().tolist() for k, v in adu_embeddings.items()}
document_dict["embeddings"] = adu_embeddings_dict
# Return as dict and JSON string. The latter is required because the JSON component converts floats
# to ints which destroys de-serialization of the document (the scores of the annotations need to be floats)
return document_dict, json.dumps(document_dict)
def render(document_txt: str, render_with: str, render_kwargs_json: str) -> str:
document_dict = json.loads(document_txt)
# remove embeddings from document_dict to make it de-serializable
document_dict.pop("embeddings", None)
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions.fromdict(
document_dict
)
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(document, **render_kwargs)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(document, **render_kwargs)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
def open_accordion():
return gr.Accordion(open=True)
def close_accordion():
return gr.Accordion(open=False)
def main():
model_name_or_path = "ArneBinder/sam-pointer-bart-base-v0.3"
# W&B run: https://wandb.ai/arne/dataset-sciarg-task-ner_re-v0.3-training/runs/prik91di
revision = "76300f8e534e2fcf695f00cb49bba166739b8d8a"
# local path
# model_name_or_path = "models/dataset-sciarg/task-ner_re/v0.3/2024-05-28_23-33-46"
# revision = None
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."
print("loading argumentation mining model ...")
pipeline = AutoPipeline.from_pretrained(
model_name_or_path,
device=-1,
num_workers=0,
taskmodule_kwargs=dict(revision=revision),
model_kwargs=dict(revision=revision),
)
print("loading SciBERT embedding model ...")
embedding_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased")
embedding_tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased")
default_render_kwargs = {
"entity_options": {
# we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
"colors": {
"own_claim".upper(): "#009933",
"background_claim".upper(): "#99ccff",
"data".upper(): "#993399",
}
},
"colors_hover": {
"selected": "#ffa",
# "tail": "#aff",
"tail": {
# green
"supports": "#9f9",
# red
"contradicts": "#f99",
# do not highlight
"parts_of_same": None,
},
"head": None, # "#faf",
"other": None,
},
}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
text = gr.Textbox(
label="Input Text",
lines=20,
value=example_text,
)
predict_btn = gr.Button("Predict")
output_txt = gr.Textbox(visible=False)
with gr.Column(scale=1):
with gr.Accordion("See plain result ...", open=False) as output_accordion:
output_json = gr.JSON(label="Model Output")
with gr.Accordion("Render Options", open=False):
render_as = gr.Dropdown(
label="Render with",
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
value=RENDER_WITH_DISPLACY,
)
render_kwargs = gr.Textbox(
label="Render Arguments",
lines=5,
value=json.dumps(default_render_kwargs, indent=2),
)
render_btn = gr.Button("Re-render")
rendered_output = gr.HTML(label="Rendered Output")
render_button_kwargs = dict(
fn=render, inputs=[output_txt, render_as, render_kwargs], outputs=rendered_output
)
predict_btn.click(open_accordion, inputs=[], outputs=[output_accordion]).then(
fn=partial(
predict,
pipeline=pipeline,
embedding_model=embedding_model,
embedding_tokenizer=embedding_tokenizer,
),
inputs=text,
outputs=[output_json, output_txt],
api_name="predict",
).success(**render_button_kwargs).success(
close_accordion, inputs=[], outputs=[output_accordion]
)
render_btn.click(**render_button_kwargs, api_name="render")
js = """
() => {
function maybeSetColor(entity, colorAttributeKey, colorDictKey) {
var color = entity.getAttribute('data-color-' + colorAttributeKey);
// if color is a json string, parse it and use the value at colorDictKey
try {
const colors = JSON.parse(color);
color = colors[colorDictKey];
} catch (e) {}
if (color) {
console.log('setting color', color);
console.log('entity', entity);
entity.style.backgroundColor = color;
entity.style.color = '#000';
}
}
function highlightRelationArguments(entityId) {
const entities = document.querySelectorAll('.entity');
// reset all entities
entities.forEach(entity => {
const color = entity.getAttribute('data-color-original');
entity.style.backgroundColor = color;
entity.style.color = '';
});
if (entityId !== null) {
var visitedEntities = new Set();
// highlight selected entity
const selectedEntity = document.getElementById(entityId);
if (selectedEntity) {
const label = selectedEntity.getAttribute('data-label');
maybeSetColor(selectedEntity, 'selected', label);
visitedEntities.add(selectedEntity);
}
// highlight tails
const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails'));
relationTailsAndLabels.forEach(relationTail => {
const tailEntity = document.getElementById(relationTail['entity-id']);
if (tailEntity) {
const label = relationTail['label'];
maybeSetColor(tailEntity, 'tail', label);
visitedEntities.add(tailEntity);
}
});
// highlight heads
const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads'));
relationHeadsAndLabels.forEach(relationHead => {
const headEntity = document.getElementById(relationHead['entity-id']);
if (headEntity) {
const label = relationHead['label'];
maybeSetColor(headEntity, 'head', label);
visitedEntities.add(headEntity);
}
});
// highlight other entities
entities.forEach(entity => {
if (!visitedEntities.has(entity)) {
const label = entity.getAttribute('data-label');
maybeSetColor(entity, 'other', label);
}
});
}
}
const entities = document.querySelectorAll('.entity');
entities.forEach(entity => {
const alreadyHasListener = entity.getAttribute('data-has-listener');
if (alreadyHasListener) {
return;
}
entity.addEventListener('mouseover', () => {
highlightRelationArguments(entity.id);
});
entity.addEventListener('mouseout', () => {
highlightRelationArguments(null);
});
entity.setAttribute('data-has-listener', 'true');
});
}
"""
rendered_output.change(fn=None, js=js, inputs=[], outputs=[])
demo.launch()
if __name__ == "__main__":
# configure logging
logging.basicConfig()
main()