|
import json |
|
import logging |
|
from functools import partial |
|
from typing import Any, Optional, Tuple |
|
|
|
import gradio as gr |
|
from pie_modules.document.processing import tokenize_document |
|
from pie_modules.documents import TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions |
|
from pie_modules.models import * |
|
from pie_modules.taskmodules import * |
|
from pytorch_ie import Pipeline |
|
from pytorch_ie.annotations import LabeledSpan |
|
from pytorch_ie.auto import AutoPipeline |
|
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions |
|
from pytorch_ie.models import * |
|
from pytorch_ie.taskmodules import * |
|
from rendering_utils import render_displacy, render_pretty_table |
|
from transformers import AutoModel, AutoTokenizer, PreTrainedModel, PreTrainedTokenizer |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments" |
|
RENDER_WITH_PRETTY_TABLE = "Pretty Table" |
|
|
|
DEFAULT_MODEL_NAME = "ArneBinder/sam-pointer-bart-base-v0.3" |
|
DEFAULT_MODEL_REVISION = "76300f8e534e2fcf695f00cb49bba166739b8d8a" |
|
|
|
|
|
|
|
DEFAULT_EMBEDDING_MODEL_NAME = "allenai/scibert_scivocab_uncased" |
|
|
|
|
|
def embed_text_annotations( |
|
document: TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, |
|
model: PreTrainedModel, |
|
tokenizer: PreTrainedTokenizer, |
|
text_layer_name: str, |
|
) -> dict: |
|
|
|
document = document.copy() |
|
|
|
document[text_layer_name].extend(document[text_layer_name].predictions.clear()) |
|
added_annotations = [] |
|
|
|
tokenizer_kwargs = {} |
|
tokenized_documents = tokenize_document( |
|
document, |
|
tokenizer=tokenizer, |
|
result_document_type=TokenDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, |
|
partition_layer="labeled_partitions", |
|
added_annotations=added_annotations, |
|
**tokenizer_kwargs, |
|
) |
|
|
|
model_inputs = tokenizer(document.text, return_tensors="pt", **tokenizer_kwargs) |
|
assert len(model_inputs.encodings) == len(tokenized_documents) |
|
model_output = model(**model_inputs) |
|
|
|
|
|
embeddings = {} |
|
for batch_idx in range(len(model_output.last_hidden_state)): |
|
text2tok_ann = added_annotations[batch_idx][text_layer_name] |
|
tok2text_ann = {v: k for k, v in text2tok_ann.items()} |
|
for tok_ann in tokenized_documents[batch_idx].labeled_spans: |
|
|
|
if tok_ann.start == tok_ann.end: |
|
continue |
|
|
|
embedding = model_output.last_hidden_state[batch_idx, tok_ann.start : tok_ann.end].max( |
|
dim=0 |
|
)[0] |
|
text_ann = tok2text_ann[tok_ann] |
|
|
|
if text_ann in embeddings: |
|
logger.warning( |
|
f"Overwriting embedding for annotation '{text_ann}' (do you use striding?)" |
|
) |
|
embeddings[text_ann] = embedding |
|
|
|
return embeddings |
|
|
|
|
|
def predict( |
|
text: str, |
|
pipeline: Pipeline, |
|
embedding_model: Optional[PreTrainedModel] = None, |
|
embedding_tokenizer: Optional[PreTrainedTokenizer] = None, |
|
) -> Tuple[dict, str]: |
|
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(text=text) |
|
|
|
|
|
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text")) |
|
|
|
|
|
pipeline(document) |
|
|
|
document_dict = document.asdict() |
|
|
|
if embedding_model is not None and embedding_tokenizer is not None: |
|
adu_embeddings = embed_text_annotations( |
|
document=document, |
|
model=embedding_model, |
|
tokenizer=embedding_tokenizer, |
|
text_layer_name="labeled_spans", |
|
) |
|
|
|
adu_embeddings_dict = {str(k._id): v.detach().tolist() for k, v in adu_embeddings.items()} |
|
document_dict["embeddings"] = adu_embeddings_dict |
|
else: |
|
gr.Warning( |
|
"No embedding model provided. Skipping embedding extraction. You can load an embedding model in the 'Model Configuration' section." |
|
) |
|
|
|
|
|
|
|
return document_dict, json.dumps(document_dict) |
|
|
|
|
|
def render(document_txt: str, render_with: str, render_kwargs_json: str) -> str: |
|
document_dict = json.loads(document_txt) |
|
|
|
document_dict.pop("embeddings", None) |
|
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions.fromdict( |
|
document_dict |
|
) |
|
render_kwargs = json.loads(render_kwargs_json) |
|
if render_with == RENDER_WITH_PRETTY_TABLE: |
|
html = render_pretty_table(document, **render_kwargs) |
|
elif render_with == RENDER_WITH_DISPLACY: |
|
html = render_displacy(document, **render_kwargs) |
|
else: |
|
raise ValueError(f"Unknown render_with value: {render_with}") |
|
|
|
return html |
|
|
|
|
|
def add_to_index( |
|
output_txt: str, doc_id: str, processed_documents: dict, vector_store: Any |
|
) -> None: |
|
try: |
|
if doc_id in processed_documents: |
|
gr.Warning(f"Document {doc_id} already in index. Overwriting.") |
|
output = json.loads(output_txt) |
|
|
|
embeddings = output.pop("embeddings") |
|
|
|
processed_documents[doc_id] = output |
|
|
|
for adu_id, embedding in embeddings.items(): |
|
emb_id = f"{doc_id}:{adu_id}" |
|
|
|
|
|
gr.Info( |
|
f"Added document {doc_id} to index (index contains {len(processed_documents)} entries). (NOT YET IMPLEMENTED)" |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Failed to add document {doc_id} to index: {e}") |
|
|
|
|
|
def open_accordion(): |
|
return gr.Accordion(open=True) |
|
|
|
|
|
def close_accordion(): |
|
return gr.Accordion(open=False) |
|
|
|
|
|
def load_argumentation_model(model_name: str, revision: Optional[str] = None) -> Pipeline: |
|
try: |
|
model = AutoPipeline.from_pretrained( |
|
model_name, |
|
device=-1, |
|
num_workers=0, |
|
taskmodule_kwargs=dict(revision=revision), |
|
model_kwargs=dict(revision=revision), |
|
) |
|
except Exception as e: |
|
raise gr.Error(f"Failed to load argumentation model: {e}") |
|
gr.Info(f"Loaded argumentation model: model_name={model_name}, revision={revision})") |
|
return model |
|
|
|
|
|
def load_embedding_model(model_name: str) -> Tuple[PreTrainedModel, PreTrainedTokenizer]: |
|
try: |
|
embedding_model = AutoModel.from_pretrained(model_name) |
|
embedding_tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
except Exception as e: |
|
raise gr.Error(f"Failed to load embedding model: {e}") |
|
gr.Info(f"Loaded embedding model: model_name={model_name})") |
|
return embedding_model, embedding_tokenizer |
|
|
|
|
|
def load_models( |
|
model_name: str, revision: Optional[str] = None, embedding_model_name: Optional[str] = None |
|
) -> Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]]: |
|
argumentation_model = load_argumentation_model(model_name, revision) |
|
embedding_model = None |
|
embedding_tokenizer = None |
|
if embedding_model_name is not None and embedding_model_name.strip(): |
|
embedding_model, embedding_tokenizer = load_embedding_model(embedding_model_name) |
|
|
|
return argumentation_model, embedding_model, embedding_tokenizer |
|
|
|
|
|
def main(): |
|
|
|
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent." |
|
|
|
print("Loading argumentation model ...") |
|
argumentation_model = load_argumentation_model( |
|
model_name=DEFAULT_MODEL_NAME, revision=DEFAULT_MODEL_REVISION |
|
) |
|
|
|
default_render_kwargs = { |
|
"entity_options": { |
|
|
|
"colors": { |
|
"own_claim".upper(): "#009933", |
|
"background_claim".upper(): "#99ccff", |
|
"data".upper(): "#993399", |
|
} |
|
}, |
|
"colors_hover": { |
|
"selected": "#ffa", |
|
|
|
"tail": { |
|
|
|
"supports": "#9f9", |
|
|
|
"contradicts": "#f99", |
|
|
|
"parts_of_same": None, |
|
}, |
|
"head": None, |
|
"other": None, |
|
}, |
|
} |
|
|
|
|
|
vector_store = None |
|
|
|
with gr.Blocks() as demo: |
|
processed_documents_state = gr.State(dict()) |
|
vector_store_state = gr.State(vector_store) |
|
|
|
models_state = gr.State((argumentation_model, None, None)) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
doc_id = gr.Textbox( |
|
label="Document ID", |
|
value="user_input", |
|
) |
|
text = gr.Textbox( |
|
label="Text", |
|
lines=20, |
|
value=example_text, |
|
) |
|
with gr.Accordion("Model Configuration", open=False): |
|
model_name = gr.Textbox( |
|
label="Model Name", |
|
value=DEFAULT_MODEL_NAME, |
|
) |
|
model_revision = gr.Textbox( |
|
label="Model Revision", |
|
value=DEFAULT_MODEL_REVISION, |
|
) |
|
embedding_model_name = gr.Textbox( |
|
label=f"Embedding Model Name (e.g. {DEFAULT_EMBEDDING_MODEL_NAME})", |
|
value="", |
|
) |
|
load_models_btn = gr.Button("Load Models") |
|
load_models_btn.click( |
|
fn=load_models, |
|
inputs=[model_name, model_revision, embedding_model_name], |
|
outputs=models_state, |
|
) |
|
|
|
predict_btn = gr.Button("Analyse") |
|
|
|
output_txt = gr.Textbox(visible=False) |
|
|
|
with gr.Column(scale=1): |
|
|
|
with gr.Accordion("See plain result ...", open=False) as output_accordion: |
|
output_json = gr.JSON(label="Model Output") |
|
|
|
with gr.Accordion("Render Options", open=False): |
|
render_as = gr.Dropdown( |
|
label="Render with", |
|
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY], |
|
value=RENDER_WITH_DISPLACY, |
|
) |
|
render_kwargs = gr.Textbox( |
|
label="Render Arguments", |
|
lines=5, |
|
value=json.dumps(default_render_kwargs, indent=2), |
|
) |
|
render_btn = gr.Button("Re-render") |
|
|
|
rendered_output = gr.HTML(label="Rendered Output") |
|
|
|
add_to_index_btn = gr.Button("Add current result to Index") |
|
|
|
render_button_kwargs = dict( |
|
fn=render, inputs=[output_txt, render_as, render_kwargs], outputs=rendered_output |
|
) |
|
|
|
def _predict( |
|
text: str, |
|
models: Tuple[Pipeline, Optional[PreTrainedModel], Optional[PreTrainedTokenizer]], |
|
) -> Tuple[dict, str]: |
|
return predict(text, *models) |
|
|
|
predict_btn.click(open_accordion, inputs=[], outputs=[output_accordion]).then( |
|
fn=_predict, |
|
inputs=[text, models_state], |
|
outputs=[output_json, output_txt], |
|
api_name="predict", |
|
).success(**render_button_kwargs).success( |
|
close_accordion, inputs=[], outputs=[output_accordion] |
|
) |
|
render_btn.click(**render_button_kwargs, api_name="render") |
|
|
|
add_to_index_btn.click( |
|
fn=add_to_index, |
|
inputs=[output_txt, doc_id, processed_documents_state, vector_store_state], |
|
outputs=[], |
|
) |
|
|
|
js = """ |
|
() => { |
|
function maybeSetColor(entity, colorAttributeKey, colorDictKey) { |
|
var color = entity.getAttribute('data-color-' + colorAttributeKey); |
|
// if color is a json string, parse it and use the value at colorDictKey |
|
try { |
|
const colors = JSON.parse(color); |
|
color = colors[colorDictKey]; |
|
} catch (e) {} |
|
if (color) { |
|
console.log('setting color', color); |
|
console.log('entity', entity); |
|
entity.style.backgroundColor = color; |
|
entity.style.color = '#000'; |
|
} |
|
} |
|
|
|
function highlightRelationArguments(entityId) { |
|
const entities = document.querySelectorAll('.entity'); |
|
// reset all entities |
|
entities.forEach(entity => { |
|
const color = entity.getAttribute('data-color-original'); |
|
entity.style.backgroundColor = color; |
|
entity.style.color = ''; |
|
}); |
|
|
|
if (entityId !== null) { |
|
var visitedEntities = new Set(); |
|
// highlight selected entity |
|
const selectedEntity = document.getElementById(entityId); |
|
if (selectedEntity) { |
|
const label = selectedEntity.getAttribute('data-label'); |
|
maybeSetColor(selectedEntity, 'selected', label); |
|
visitedEntities.add(selectedEntity); |
|
} |
|
// highlight tails |
|
const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails')); |
|
relationTailsAndLabels.forEach(relationTail => { |
|
const tailEntity = document.getElementById(relationTail['entity-id']); |
|
if (tailEntity) { |
|
const label = relationTail['label']; |
|
maybeSetColor(tailEntity, 'tail', label); |
|
visitedEntities.add(tailEntity); |
|
} |
|
}); |
|
// highlight heads |
|
const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads')); |
|
relationHeadsAndLabels.forEach(relationHead => { |
|
const headEntity = document.getElementById(relationHead['entity-id']); |
|
if (headEntity) { |
|
const label = relationHead['label']; |
|
maybeSetColor(headEntity, 'head', label); |
|
visitedEntities.add(headEntity); |
|
} |
|
}); |
|
// highlight other entities |
|
entities.forEach(entity => { |
|
if (!visitedEntities.has(entity)) { |
|
const label = entity.getAttribute('data-label'); |
|
maybeSetColor(entity, 'other', label); |
|
} |
|
}); |
|
} |
|
} |
|
|
|
const entities = document.querySelectorAll('.entity'); |
|
entities.forEach(entity => { |
|
const alreadyHasListener = entity.getAttribute('data-has-listener'); |
|
if (alreadyHasListener) { |
|
return; |
|
} |
|
entity.addEventListener('mouseover', () => { |
|
highlightRelationArguments(entity.id); |
|
}); |
|
entity.addEventListener('mouseout', () => { |
|
highlightRelationArguments(null); |
|
}); |
|
entity.setAttribute('data-has-listener', 'true'); |
|
}); |
|
} |
|
""" |
|
|
|
rendered_output.change(fn=None, js=js, inputs=[], outputs=[]) |
|
|
|
demo.launch() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
logging.basicConfig() |
|
|
|
main() |
|
|