File size: 8,743 Bytes
3133b5e
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
ced4316
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
ced4316
 
3133b5e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
from __future__ import annotations

import logging
from functools import partial
from typing import (
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Sequence,
    Type,
    TypeVar,
    Union,
    overload,
)

from pie_modules.utils import resolve_type
from pytorch_ie import AutoPipeline, WithDocumentTypeMixin
from pytorch_ie.core import Document

logger = logging.getLogger(__name__)


D = TypeVar("D", bound=Document)


def clear_annotation_layers(doc: D, layer_names: List[str], predictions: bool = False) -> None:
    for layer_name in layer_names:
        if predictions:
            doc[layer_name].predictions.clear()
        else:
            doc[layer_name].clear()


def move_annotations_from_predictions(doc: D, layer_names: List[str]) -> None:
    for layer_name in layer_names:
        annotations = list(doc[layer_name].predictions)
        # remove any previous annotations
        doc[layer_name].clear()
        # each annotation can be attached to just one annotation container, so we need to clear the predictions
        doc[layer_name].predictions.clear()
        doc[layer_name].extend(annotations)


def move_annotations_to_predictions(doc: D, layer_names: List[str]) -> None:
    for layer_name in layer_names:
        annotations = list(doc[layer_name])
        # each annotation can be attached to just one annotation container, so we need to clear the layer
        doc[layer_name].clear()
        # remove any previous annotations
        doc[layer_name].predictions.clear()
        doc[layer_name].predictions.extend(annotations)


def add_annotations_from_other_documents(
    docs: Iterable[D],
    other_docs: Sequence[Document],
    layer_names: List[str],
    from_predictions: bool = False,
    to_predictions: bool = False,
    clear_before: bool = True,
) -> None:
    for i, doc in enumerate(docs):
        other_doc = other_docs[i]
        # copy to not modify the input
        other_doc = type(other_doc).fromdict(other_doc.asdict())

        for layer_name in layer_names:
            if clear_before:
                doc[layer_name].clear()
            other_layer = other_doc[layer_name]
            if from_predictions:
                other_layer = other_layer.predictions
            other_annotations = list(other_layer)
            other_layer.clear()
            if to_predictions:
                doc[layer_name].predictions.extend(other_annotations)
            else:
                doc[layer_name].extend(other_annotations)


def process_pipeline_steps(
    documents: Sequence[Document],
    processors: Dict[str, Callable[[Sequence[Document]], Optional[Sequence[Document]]]],
    verbose: bool = False,
) -> Sequence[Document]:

    # call the processors in the order they are provided
    for step_name, processor in processors.items():
        if verbose:
            logger.info(f"process {step_name} ...")
        processed_documents = processor(documents)
        if processed_documents is not None:
            documents = processed_documents

    return documents


def process_documents(
    documents: List[Document], processor: Callable[..., Optional[Document]], **kwargs
) -> List[Document]:
    result = []
    for doc in documents:
        processed_doc = processor(doc, **kwargs)
        if processed_doc is not None:
            result.append(processed_doc)
        else:
            result.append(doc)
    return result


class DummyTaskmodule(WithDocumentTypeMixin):
    def __init__(self, document_type: Optional[Union[Type[Document], str]]):
        if isinstance(document_type, str):
            self._document_type = resolve_type(document_type, expected_super_type=Document)
        else:
            self._document_type = document_type

    @property
    def document_type(self) -> Optional[Type[Document]]:
        return self._document_type


class NerRePipeline:
    def __init__(
        self,
        ner_model_path: str,
        re_model_path: str,
        entity_layer: str,
        relation_layer: str,
        device: Optional[int] = None,
        batch_size: Optional[int] = None,
        show_progress_bar: Optional[bool] = None,
        document_type: Optional[Union[Type[Document], str]] = None,
        verbose: bool = True,
        **processor_kwargs,
    ):
        self.taskmodule = DummyTaskmodule(document_type)
        self.ner_model_path = ner_model_path
        self.re_model_path = re_model_path
        self.processor_kwargs = processor_kwargs or {}
        self.entity_layer = entity_layer
        self.relation_layer = relation_layer
        self.verbose = verbose
        # set some values for the inference processors, if provided
        for inference_pipeline in ["ner_pipeline", "re_pipeline"]:
            if inference_pipeline not in self.processor_kwargs:
                self.processor_kwargs[inference_pipeline] = {}
            if "device" not in self.processor_kwargs[inference_pipeline] and device is not None:
                self.processor_kwargs[inference_pipeline]["device"] = device
            if (
                "batch_size" not in self.processor_kwargs[inference_pipeline]
                and batch_size is not None
            ):
                self.processor_kwargs[inference_pipeline]["batch_size"] = batch_size
            if (
                "show_progress_bar" not in self.processor_kwargs[inference_pipeline]
                and show_progress_bar is not None
            ):
                self.processor_kwargs[inference_pipeline]["show_progress_bar"] = show_progress_bar

        self.ner_pipeline = AutoPipeline.from_pretrained(
            self.ner_model_path, **self.processor_kwargs.get("ner_pipeline", {})
        )
        self.re_pipeline = AutoPipeline.from_pretrained(
            self.re_model_path, **self.processor_kwargs.get("re_pipeline", {})
        )

    @overload
    def __call__(
        self, documents: Sequence[Document], inplace: bool = False
    ) -> Sequence[Document]: ...

    @overload
    def __call__(self, documents: Document, inplace: bool = False) -> Document: ...

    def __call__(
        self, documents: Union[Sequence[Document], Document], inplace: bool = False
    ) -> Union[Sequence[Document], Document]:

        is_single_doc = False
        if isinstance(documents, Document):
            documents = [documents]
            is_single_doc = True

        input_docs: Sequence[Document]
        # we need to keep the original documents to add the gold data back
        original_docs: Sequence[Document]
        if inplace:
            input_docs = documents
            original_docs = [doc.copy() for doc in documents]
        else:
            input_docs = [doc.copy() for doc in documents]
            original_docs = documents

        docs_with_predictions = process_pipeline_steps(
            documents=input_docs,
            processors={
                "clear_annotations": partial(
                    process_documents,
                    processor=clear_annotation_layers,
                    layer_names=[self.entity_layer, self.relation_layer],
                    **self.processor_kwargs.get("clear_annotations", {}),
                ),
                "ner_pipeline": self.ner_pipeline,
                "use_predicted_entities": partial(
                    process_documents,
                    processor=move_annotations_from_predictions,
                    layer_names=[self.entity_layer],
                    **self.processor_kwargs.get("use_predicted_entities", {}),
                ),
                "re_pipeline": self.re_pipeline,
                # otherwise we can not move the entities back to predictions
                "clear_candidate_relations": partial(
                    process_documents,
                    processor=clear_annotation_layers,
                    layer_names=[self.relation_layer],
                    **self.processor_kwargs.get("clear_candidate_relations", {}),
                ),
                "move_entities_to_predictions": partial(
                    process_documents,
                    processor=move_annotations_to_predictions,
                    layer_names=[self.entity_layer],
                    **self.processor_kwargs.get("move_entities_to_predictions", {}),
                ),
                "re_add_gold_data": partial(
                    add_annotations_from_other_documents,
                    other_docs=original_docs,
                    layer_names=[self.entity_layer, self.relation_layer],
                    **self.processor_kwargs.get("re_add_gold_data", {}),
                ),
            },
            verbose=self.verbose,
        )
        if is_single_doc:
            return docs_with_predictions[0]
        return docs_with_predictions