File size: 13,777 Bytes
3133b5e
 
 
ced4316
3133b5e
ced4316
3133b5e
ced4316
3133b5e
 
ced4316
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
3133b5e
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
ced4316
3133b5e
ced4316
3133b5e
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3133b5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced4316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from __future__ import annotations

import logging
from typing import Any, Dict, Iterable, List, Optional, Set, Tuple, TypeVar

from pie_modules.document.processing.merge_spans_via_relation import _merge_spans_via_relation
from pie_modules.documents import TextDocumentWithLabeledMultiSpansAndBinaryRelations
from pie_modules.utils.span import have_overlap
from pytorch_ie import AnnotationLayer
from pytorch_ie.core import Document
from pytorch_ie.core.document import Annotation, _enumerate_dependencies

from src.utils import distance
from src.utils.span_utils import get_overlap_len

logger = logging.getLogger(__name__)


D = TypeVar("D", bound=Document)


def _remove_overlapping_entities(
    entities: Iterable[Dict[str, Any]], relations: Iterable[Dict[str, Any]]
) -> Tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:
    sorted_entities = sorted(entities, key=lambda span: span["start"])
    entities_wo_overlap = []
    skipped_entities = []
    last_end = 0
    for entity_dict in sorted_entities:
        if entity_dict["start"] < last_end:
            skipped_entities.append(entity_dict)
        else:
            entities_wo_overlap.append(entity_dict)
            last_end = entity_dict["end"]
    if len(skipped_entities) > 0:
        logger.warning(f"skipped overlapping entities: {skipped_entities}")
    valid_entity_ids = set(entity_dict["_id"] for entity_dict in entities_wo_overlap)
    valid_relations = [
        relation_dict
        for relation_dict in relations
        if relation_dict["head"] in valid_entity_ids and relation_dict["tail"] in valid_entity_ids
    ]
    return entities_wo_overlap, valid_relations


def remove_overlapping_entities(
    doc: D,
    entity_layer_name: str = "entities",
    relation_layer_name: str = "relations",
) -> D:
    # TODO: use document.add_all_annotations_from_other()
    document_dict = doc.asdict()
    entities_wo_overlap, valid_relations = _remove_overlapping_entities(
        entities=document_dict[entity_layer_name]["annotations"],
        relations=document_dict[relation_layer_name]["annotations"],
    )

    document_dict[entity_layer_name] = {
        "annotations": entities_wo_overlap,
        "predictions": [],
    }
    document_dict[relation_layer_name] = {
        "annotations": valid_relations,
        "predictions": [],
    }
    new_doc = type(doc).fromdict(document_dict)

    return new_doc


# TODO: remove and use pie_modules.document.processing.SpansViaRelationMerger instead
def merge_spans_via_relation(
    document: D,
    relation_layer: str,
    link_relation_label: str,
    use_predicted_spans: bool = False,
    process_predictions: bool = True,
    create_multi_spans: bool = False,
) -> D:

    rel_layer = document[relation_layer]
    span_layer = rel_layer.target_layer
    new_gold_spans, new_gold_relations = _merge_spans_via_relation(
        spans=span_layer,
        relations=rel_layer,
        link_relation_label=link_relation_label,
        create_multi_spans=create_multi_spans,
    )
    if process_predictions:
        new_pred_spans, new_pred_relations = _merge_spans_via_relation(
            spans=span_layer.predictions if use_predicted_spans else span_layer,
            relations=rel_layer.predictions,
            link_relation_label=link_relation_label,
            create_multi_spans=create_multi_spans,
        )
    else:
        assert not use_predicted_spans
        new_pred_spans = set(span_layer.predictions.clear())
        new_pred_relations = set(rel_layer.predictions.clear())

    relation_layer_name = relation_layer
    span_layer_name = document[relation_layer].target_name
    if create_multi_spans:
        doc_dict = document.asdict()
        for f in document.annotation_fields():
            doc_dict.pop(f.name)

        result = TextDocumentWithLabeledMultiSpansAndBinaryRelations.fromdict(doc_dict)
        result.labeled_multi_spans.extend(new_gold_spans)
        result.labeled_multi_spans.predictions.extend(new_pred_spans)
        result.binary_relations.extend(new_gold_relations)
        result.binary_relations.predictions.extend(new_pred_relations)
    else:
        result = document.copy(with_annotations=False)
        result[span_layer_name].extend(new_gold_spans)
        result[span_layer_name].predictions.extend(new_pred_spans)
        result[relation_layer_name].extend(new_gold_relations)
        result[relation_layer_name].predictions.extend(new_pred_relations)

    return result


def remove_partitions_by_labels(
    document: D, partition_layer: str, label_blacklist: List[str], span_layer: Optional[str] = None
) -> D:
    """Remove partitions with labels in the blacklist from a document.

    Args:
        document: The document to process.
        partition_layer: The name of the partition layer.
        label_blacklist: The list of labels to remove.
        span_layer: The name of the span layer to remove spans from if they are not fully
            contained in any remaining partition. Any dependent annotations will be removed as well.

    Returns:
        The processed document.
    """

    document = document.copy()
    p_layer: AnnotationLayer = document[partition_layer]
    new_partitions = []
    for partition in p_layer.clear():
        if partition.label not in label_blacklist:
            new_partitions.append(partition)
    p_layer.extend(new_partitions)

    if span_layer is not None:
        result = document.copy(with_annotations=False)
        removed_span_ids = set()
        for span in document[span_layer]:
            # keep spans fully contained in any partition
            if any(
                partition.start <= span.start and span.end <= partition.end
                for partition in new_partitions
            ):
                result[span_layer].append(span.copy())
            else:
                removed_span_ids.add(span._id)

        result.add_all_annotations_from_other(
            document,
            removed_annotations={span_layer: removed_span_ids},
            strict=False,
            verbose=False,
        )
        document = result

    return document


D_text = TypeVar("D_text", bound=Document)


def replace_substrings_in_text(
    document: D_text, replacements: Dict[str, str], enforce_same_length: bool = True
) -> D_text:
    new_text = document.text
    for old_str, new_str in replacements.items():
        if enforce_same_length and len(old_str) != len(new_str):
            raise ValueError(
                f'Replacement strings must have the same length, but got "{old_str}" -> "{new_str}"'
            )
        new_text = new_text.replace(old_str, new_str)
    result_dict = document.asdict()
    result_dict["text"] = new_text
    result = type(document).fromdict(result_dict)
    result.text = new_text
    return result


def replace_substrings_in_text_with_spaces(document: D_text, substrings: Iterable[str]) -> D_text:
    replacements = {substring: " " * len(substring) for substring in substrings}
    return replace_substrings_in_text(document, replacements=replacements)


def relabel_annotations(
    document: D,
    label_mapping: Dict[str, Dict[str, str]],
) -> D:
    """
    Replace annotation labels in a document.

    Args:
        document: The document to process.
        label_mapping: A mapping from layer names to mappings from old labels to new labels.

    Returns:
        The processed document.

    """

    dependency_ordered_fields: List[str] = []
    _enumerate_dependencies(
        dependency_ordered_fields,
        dependency_graph=document._annotation_graph,
        nodes=document._annotation_graph["_artificial_root"],
    )
    result = document.copy(with_annotations=False)
    store: Dict[int, Annotation] = {}
    # not yet used
    invalid_annotation_ids: Set[int] = set()
    for field_name in dependency_ordered_fields:
        if field_name in document._annotation_fields:
            layer = document[field_name]
            for is_prediction, anns in [(False, layer), (True, layer.predictions)]:
                for ann in anns:
                    new_ann = ann.copy_with_store(
                        override_annotation_store=store,
                        invalid_annotation_ids=invalid_annotation_ids,
                    )
                    if field_name in label_mapping:
                        if ann.label in label_mapping[field_name]:
                            new_label = label_mapping[field_name][ann.label]
                            new_ann = new_ann.copy(label=new_label)
                        else:
                            raise ValueError(
                                f"Label {ann.label} not found in label mapping for {field_name}"
                            )
                    store[ann._id] = new_ann
                    target_layer = result[field_name]
                    if is_prediction:
                        target_layer.predictions.append(new_ann)
                    else:
                        target_layer.append(new_ann)

    return result


DWithSpans = TypeVar("DWithSpans", bound=Document)


def align_predicted_span_annotations(
    document: DWithSpans, span_layer: str, distance_type: str = "center", verbose: bool = False
) -> DWithSpans:
    """
    Aligns predicted span annotations with the closest gold spans in a document.

    First, calculates the distance between each predicted span and each gold span. Then,
    for each predicted span, the gold span with the smallest distance is selected. If the
    predicted span and the gold span have an overlap of at least half of the maximum length
    of the two spans, the predicted span is aligned with the gold span.

    Args:
        document: The document to process.
        span_layer: The name of the span layer.
        distance_type: The type of distance to calculate. One of: center, inner, outer
        verbose: Whether to print debug information.

    Returns:
        The processed document.
    """
    gold_spans = document[span_layer]
    if len(gold_spans) == 0:
        return document.copy()

    pred_spans = document[span_layer].predictions
    old2new_pred_span = {}
    span_id2gold_span = {}
    for pred_span in pred_spans:

        gold_spans_with_distance = [
            (
                gold_span,
                distance(
                    start_end=(pred_span.start, pred_span.end),
                    other_start_end=(gold_span.start, gold_span.end),
                    distance_type=distance_type,
                ),
            )
            for gold_span in gold_spans
        ]

        closest_gold_span, min_distance = min(gold_spans_with_distance, key=lambda x: x[1])
        # if the closest gold span is the same as the predicted span, we don't need to align
        if min_distance == 0.0:
            continue

        if have_overlap(
            start_end=(pred_span.start, pred_span.end),
            other_start_end=(closest_gold_span.start, closest_gold_span.end),
        ):
            overlap_len = get_overlap_len(
                (pred_span.start, pred_span.end), (closest_gold_span.start, closest_gold_span.end)
            )
            # get the maximum length of the two spans
            l_max = max(
                pred_span.end - pred_span.start, closest_gold_span.end - closest_gold_span.start
            )
            # if the overlap is at least half of the maximum length, we consider it a valid match for alignment
            valid_match = overlap_len >= (l_max / 2)
        else:
            valid_match = False

        if valid_match:
            aligned_pred_span = pred_span.copy(
                start=closest_gold_span.start, end=closest_gold_span.end
            )
            old2new_pred_span[pred_span._id] = aligned_pred_span
            span_id2gold_span[pred_span._id] = closest_gold_span

    result = document.copy(with_annotations=False)

    # multiple predicted spans can be aligned with the same gold span,
    # so we need to keep track of the added spans
    added_pred_span_ids = dict()
    for pred_span in pred_spans:
        # just add the predicted span if it was not aligned with a gold span
        if pred_span._id not in old2new_pred_span:
            # if this was not added before (e.g. as aligned span), add it
            if pred_span._id not in added_pred_span_ids:
                keep_pred_span = pred_span.copy()
                result[span_layer].predictions.append(keep_pred_span)
                added_pred_span_ids[pred_span._id] = keep_pred_span
            elif verbose:
                print(f"Skipping duplicate predicted span. pred_span='{str(pred_span)}'")
        else:
            aligned_pred_span = old2new_pred_span[pred_span._id]
            # if this was not added before (e.g. as aligned or original pred span), add it
            if aligned_pred_span._id not in added_pred_span_ids:
                result[span_layer].predictions.append(aligned_pred_span)
                added_pred_span_ids[aligned_pred_span._id] = aligned_pred_span
            elif verbose:
                prev_pred_span = added_pred_span_ids[aligned_pred_span._id]
                gold_span = span_id2gold_span[pred_span._id]
                print(
                    f"Skipping duplicate aligned predicted span. aligned gold_span='{str(gold_span)}', "
                    f"prev_pred_span='{str(prev_pred_span)}', current_pred_span='{str(pred_span)}'"
                )
                # print("bbb")

    result[span_layer].extend([span.copy() for span in gold_spans])

    # add remaining gold and predicted spans (the result, _aligned_spans, is just for debugging)
    _aligned_spans = result.add_all_annotations_from_other(
        document, override_annotations={span_layer: old2new_pred_span}
    )

    return result