File size: 10,073 Bytes
9f76503 bfcba2d 9f76503 f3e17f7 bfcba2d f3e17f7 5003662 f3e17f7 54625d7 9f76503 a8529ac 9f76503 a8529ac 7d208a6 a8529ac 9f76503 7d208a6 9f76503 7d208a6 5003662 9f76503 7d208a6 9f76503 a8529ac f3e17f7 c002b34 9f76503 f3e17f7 a8529ac c002b34 f3e17f7 c002b34 f3e17f7 9f76503 5003662 16d7871 70fea2e 16d7871 9f76503 70fea2e c002b34 70fea2e c002b34 70fea2e 9f76503 a8529ac 7d208a6 a8529ac ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 70fea2e ff28cb9 a8529ac ff28cb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import json
from typing import Tuple
import gradio as gr
from pie_modules.models import * # noqa: F403
from pie_modules.taskmodules import * # noqa: F403
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pytorch_ie.models import * # noqa: F403
from pytorch_ie.taskmodules import * # noqa: F403
from rendering_utils import render_displacy, render_pretty_table
RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"
def predict(text: str) -> Tuple[dict, str]:
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(text=text)
# add single partition from the whole text (the model only considers text in partitions)
document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))
# execute prediction pipeline
pipeline(document)
document_dict = document.asdict()
return document_dict, json.dumps(document_dict)
def render(document_txt: str, render_with: str, render_kwargs_json: str) -> str:
document_dict = json.loads(document_txt)
document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions.fromdict(
document_dict
)
render_kwargs = json.loads(render_kwargs_json)
if render_with == RENDER_WITH_PRETTY_TABLE:
html = render_pretty_table(document, **render_kwargs)
elif render_with == RENDER_WITH_DISPLACY:
html = render_displacy(document, **render_kwargs)
else:
raise ValueError(f"Unknown render_with value: {render_with}")
return html
def open_accordion():
return gr.Accordion(open=True)
def close_accordion():
return gr.Accordion(open=False)
if __name__ == "__main__":
model_name_or_path = "ArneBinder/sam-pointer-bart-base-v0.3"
revision = "85d9e20208e0dcbac80753fde7f5b3a4f61b5772"
# local path
# model_name_or_path = "models/dataset-sciarg/task-ner_re/v0.3/2024-03-01_18-25-32"
example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."
pipeline = AutoPipeline.from_pretrained(
model_name_or_path,
device=-1,
num_workers=0,
taskmodule_kwargs=dict(revision=revision),
model_kwargs=dict(revision=revision),
)
default_render_kwargs = {
"entity_options": {
# we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
"colors": {
"own_claim".upper(): "#009933",
"background_claim".upper(): "#99ccff",
"data".upper(): "#993399",
}
},
"colors_hover": {
"selected": "#ffa",
# "tail": "#aff",
"tail": {
# green
"supports": "#9f9",
# red
"contradicts": "#f99",
# do not highlight
"parts_of_same": None,
},
"head": None, # "#faf",
"other": None,
},
}
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
text = gr.Textbox(
label="Input Text",
lines=20,
value=example_text,
)
predict_btn = gr.Button("Predict")
output_txt = gr.Textbox(visible=False)
with gr.Column(scale=1):
with gr.Accordion("See plain result ...", open=False) as output_accordion:
output_json = gr.JSON(label="Model Output")
with gr.Accordion("Render Options", open=False):
render_as = gr.Dropdown(
label="Render with",
choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
value=RENDER_WITH_DISPLACY,
)
render_kwargs = gr.Textbox(
label="Render Arguments",
lines=5,
value=json.dumps(default_render_kwargs, indent=2),
)
render_btn = gr.Button("Re-render")
rendered_output = gr.HTML(label="Rendered Output")
render_button_kwargs = dict(
fn=render, inputs=[output_txt, render_as, render_kwargs], outputs=rendered_output
)
predict_btn.click(open_accordion, inputs=[], outputs=[output_accordion]).then(
fn=predict, inputs=text, outputs=[output_json, output_txt], api_name="predict"
).success(**render_button_kwargs).success(
close_accordion, inputs=[], outputs=[output_accordion]
)
render_btn.click(**render_button_kwargs, api_name="render")
js = """
() => {
function maybeSetColor(entity, colorAttributeKey, colorDictKey) {
var color = entity.getAttribute('data-color-' + colorAttributeKey);
// if color is a json string, parse it and use the value at colorDictKey
try {
const colors = JSON.parse(color);
color = colors[colorDictKey];
} catch (e) {}
if (color) {
console.log('setting color', color);
console.log('entity', entity);
entity.style.backgroundColor = color;
entity.style.color = '#000';
}
}
function highlightRelationArguments(entityId) {
const entities = document.querySelectorAll('.entity');
// reset all entities
entities.forEach(entity => {
const color = entity.getAttribute('data-color-original');
entity.style.backgroundColor = color;
entity.style.color = '';
});
if (entityId !== null) {
var visitedEntities = new Set();
// highlight selected entity
const selectedEntity = document.getElementById(entityId);
if (selectedEntity) {
const label = selectedEntity.getAttribute('data-label');
maybeSetColor(selectedEntity, 'selected', label);
visitedEntities.add(selectedEntity);
}
// highlight tails
const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails'));
relationTailsAndLabels.forEach(relationTail => {
const tailEntity = document.getElementById(relationTail['entity-id']);
if (tailEntity) {
const label = relationTail['label'];
maybeSetColor(tailEntity, 'tail', label);
visitedEntities.add(tailEntity);
}
});
// highlight heads
const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads'));
relationHeadsAndLabels.forEach(relationHead => {
const headEntity = document.getElementById(relationHead['entity-id']);
if (headEntity) {
const label = relationHead['label'];
maybeSetColor(headEntity, 'head', label);
visitedEntities.add(headEntity);
}
});
// highlight other entities
entities.forEach(entity => {
if (!visitedEntities.has(entity)) {
const label = entity.getAttribute('data-label');
maybeSetColor(entity, 'other', label);
}
});
}
}
const entities = document.querySelectorAll('.entity');
entities.forEach(entity => {
const alreadyHasListener = entity.getAttribute('data-has-listener');
if (alreadyHasListener) {
return;
}
entity.addEventListener('mouseover', () => {
highlightRelationArguments(entity.id);
});
entity.addEventListener('mouseout', () => {
highlightRelationArguments(null);
});
entity.setAttribute('data-has-listener', 'true');
});
}
"""
rendered_output.change(fn=None, js=js, inputs=[], outputs=[])
demo.launch()
|