File size: 10,073 Bytes
9f76503
bfcba2d
9f76503
f3e17f7
 
 
bfcba2d
f3e17f7
 
 
 
5003662
f3e17f7
54625d7
 
9f76503
 
a8529ac
9f76503
 
 
 
 
 
 
 
a8529ac
 
 
 
7d208a6
a8529ac
 
 
 
9f76503
7d208a6
9f76503
7d208a6
5003662
9f76503
7d208a6
9f76503
 
 
 
a8529ac
 
 
 
 
 
 
 
f3e17f7
 
 
c002b34
9f76503
f3e17f7
 
a8529ac
 
c002b34
f3e17f7
 
 
c002b34
 
f3e17f7
 
9f76503
5003662
16d7871
 
 
70fea2e
16d7871
 
9f76503
70fea2e
 
 
 
 
 
 
 
c002b34
 
70fea2e
c002b34
70fea2e
 
9f76503
 
a8529ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d208a6
 
 
a8529ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff28cb9
 
70fea2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff28cb9
70fea2e
ff28cb9
70fea2e
 
ff28cb9
 
 
 
70fea2e
 
ff28cb9
 
70fea2e
 
 
ff28cb9
 
 
 
 
 
70fea2e
 
 
ff28cb9
 
 
 
 
 
 
70fea2e
 
 
 
 
 
 
 
 
 
ff28cb9
 
 
 
 
 
 
70fea2e
 
 
 
ff28cb9
70fea2e
ff28cb9
 
70fea2e
ff28cb9
70fea2e
ff28cb9
 
 
a8529ac
ff28cb9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import json
from typing import Tuple

import gradio as gr
from pie_modules.models import *  # noqa: F403
from pie_modules.taskmodules import *  # noqa: F403
from pytorch_ie.annotations import LabeledSpan
from pytorch_ie.auto import AutoPipeline
from pytorch_ie.documents import TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
from pytorch_ie.models import *  # noqa: F403
from pytorch_ie.taskmodules import *  # noqa: F403
from rendering_utils import render_displacy, render_pretty_table

RENDER_WITH_DISPLACY = "displaCy + highlighted arguments"
RENDER_WITH_PRETTY_TABLE = "Pretty Table"


def predict(text: str) -> Tuple[dict, str]:
    document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions(text=text)

    # add single partition from the whole text (the model only considers text in partitions)
    document.labeled_partitions.append(LabeledSpan(start=0, end=len(text), label="text"))

    # execute prediction pipeline
    pipeline(document)

    document_dict = document.asdict()
    return document_dict, json.dumps(document_dict)


def render(document_txt: str, render_with: str, render_kwargs_json: str) -> str:
    document_dict = json.loads(document_txt)
    document = TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions.fromdict(
        document_dict
    )
    render_kwargs = json.loads(render_kwargs_json)
    if render_with == RENDER_WITH_PRETTY_TABLE:
        html = render_pretty_table(document, **render_kwargs)
    elif render_with == RENDER_WITH_DISPLACY:
        html = render_displacy(document, **render_kwargs)
    else:
        raise ValueError(f"Unknown render_with value: {render_with}")

    return html


def open_accordion():
    return gr.Accordion(open=True)


def close_accordion():
    return gr.Accordion(open=False)


if __name__ == "__main__":

    model_name_or_path = "ArneBinder/sam-pointer-bart-base-v0.3"
    revision = "85d9e20208e0dcbac80753fde7f5b3a4f61b5772"
    # local path
    # model_name_or_path = "models/dataset-sciarg/task-ner_re/v0.3/2024-03-01_18-25-32"

    example_text = "Scholarly Argumentation Mining (SAM) has recently gained attention due to its potential to help scholars with the rapid growth of published scientific literature. It comprises two subtasks: argumentative discourse unit recognition (ADUR) and argumentative relation extraction (ARE), both of which are challenging since they require e.g. the integration of domain knowledge, the detection of implicit statements, and the disambiguation of argument structure. While previous work focused on dataset construction and baseline methods for specific document sections, such as abstract or results, full-text scholarly argumentation mining has seen little progress. In this work, we introduce a sequential pipeline model combining ADUR and ARE for full-text SAM, and provide a first analysis of the performance of pretrained language models (PLMs) on both subtasks. We establish a new SotA for ADUR on the Sci-Arg corpus, outperforming the previous best reported result by a large margin (+7% F1). We also present the first results for ARE, and thus for the full AM pipeline, on this benchmark dataset. Our detailed error analysis reveals that non-contiguous ADUs as well as the interpretation of discourse connectors pose major challenges and that data annotation needs to be more consistent."

    pipeline = AutoPipeline.from_pretrained(
        model_name_or_path,
        device=-1,
        num_workers=0,
        taskmodule_kwargs=dict(revision=revision),
        model_kwargs=dict(revision=revision),
    )

    default_render_kwargs = {
        "entity_options": {
            # we need to convert the keys to uppercase because the spacy rendering function expects them in uppercase
            "colors": {
                "own_claim".upper(): "#009933",
                "background_claim".upper(): "#99ccff",
                "data".upper(): "#993399",
            }
        },
        "colors_hover": {
            "selected": "#ffa",
            # "tail": "#aff",
            "tail": {
                # green
                "supports": "#9f9",
                # red
                "contradicts": "#f99",
                # do not highlight
                "parts_of_same": None,
            },
            "head": None,  # "#faf",
            "other": None,
        },
    }

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column(scale=1):
                text = gr.Textbox(
                    label="Input Text",
                    lines=20,
                    value=example_text,
                )

                predict_btn = gr.Button("Predict")

                output_txt = gr.Textbox(visible=False)

            with gr.Column(scale=1):

                with gr.Accordion("See plain result ...", open=False) as output_accordion:
                    output_json = gr.JSON(label="Model Output")

                with gr.Accordion("Render Options", open=False):
                    render_as = gr.Dropdown(
                        label="Render with",
                        choices=[RENDER_WITH_PRETTY_TABLE, RENDER_WITH_DISPLACY],
                        value=RENDER_WITH_DISPLACY,
                    )
                    render_kwargs = gr.Textbox(
                        label="Render Arguments",
                        lines=5,
                        value=json.dumps(default_render_kwargs, indent=2),
                    )
                render_btn = gr.Button("Re-render")

                rendered_output = gr.HTML(label="Rendered Output")

        render_button_kwargs = dict(
            fn=render, inputs=[output_txt, render_as, render_kwargs], outputs=rendered_output
        )
        predict_btn.click(open_accordion, inputs=[], outputs=[output_accordion]).then(
            fn=predict, inputs=text, outputs=[output_json, output_txt], api_name="predict"
        ).success(**render_button_kwargs).success(
            close_accordion, inputs=[], outputs=[output_accordion]
        )
        render_btn.click(**render_button_kwargs, api_name="render")

        js = """
        () => {
            function maybeSetColor(entity, colorAttributeKey, colorDictKey) {
                var color = entity.getAttribute('data-color-' + colorAttributeKey);
                // if color is a json string, parse it and use the value at colorDictKey
                try {
                    const colors = JSON.parse(color);
                    color = colors[colorDictKey];
                } catch (e) {}
                if (color) {
                    console.log('setting color', color);
                    console.log('entity', entity);
                    entity.style.backgroundColor = color;
                    entity.style.color = '#000';
                }
            }

            function highlightRelationArguments(entityId) {
                const entities = document.querySelectorAll('.entity');
                // reset all entities
                entities.forEach(entity => {
                    const color = entity.getAttribute('data-color-original');
                    entity.style.backgroundColor = color;
                    entity.style.color = '';
                });

                if (entityId !== null) {
                    var visitedEntities = new Set();
                    // highlight selected entity
                    const selectedEntity = document.getElementById(entityId);
                    if (selectedEntity) {
                        const label = selectedEntity.getAttribute('data-label');
                        maybeSetColor(selectedEntity, 'selected', label);
                        visitedEntities.add(selectedEntity);
                    }
                    // highlight tails
                    const relationTailsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-tails'));
                    relationTailsAndLabels.forEach(relationTail => {
                        const tailEntity = document.getElementById(relationTail['entity-id']);
                        if (tailEntity) {
                            const label = relationTail['label'];
                            maybeSetColor(tailEntity, 'tail', label);
                            visitedEntities.add(tailEntity);
                        }
                    });
                    // highlight heads
                    const relationHeadsAndLabels = JSON.parse(selectedEntity.getAttribute('data-relation-heads'));
                    relationHeadsAndLabels.forEach(relationHead => {
                        const headEntity = document.getElementById(relationHead['entity-id']);
                        if (headEntity) {
                            const label = relationHead['label'];
                            maybeSetColor(headEntity, 'head', label);
                            visitedEntities.add(headEntity);
                        }
                    });
                    // highlight other entities
                    entities.forEach(entity => {
                        if (!visitedEntities.has(entity)) {
                            const label = entity.getAttribute('data-label');
                            maybeSetColor(entity, 'other', label);
                        }
                    });
                }
            }

            const entities = document.querySelectorAll('.entity');
            entities.forEach(entity => {
                const alreadyHasListener = entity.getAttribute('data-has-listener');
                if (alreadyHasListener) {
                    return;
                }
                entity.addEventListener('mouseover', () => {
                    highlightRelationArguments(entity.id);
                });
                entity.addEventListener('mouseout', () => {
                    highlightRelationArguments(null);
                });
                entity.setAttribute('data-has-listener', 'true');
            });
        }
        """

        rendered_output.change(fn=None, js=js, inputs=[], outputs=[])

    demo.launch()