ArnabDeo's picture
Update app.py
09b29e2 verified
raw
history blame
24.7 kB
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import warnings
import time
import gc
import os
import torch
from datetime import datetime, timedelta
from typing import Optional, Dict, Any, Tuple
warnings.filterwarnings('ignore')
# Environment optimizations for Hugging Face Spaces
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
os.environ['HF_HUB_DISABLE_PROGRESS_BARS'] = '1'
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
os.environ['TRANSFORMERS_VERBOSITY'] = 'error'
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.set_num_threads(min(4, os.cpu_count() or 1))
class FastAIStockAnalyzer:
"""Optimized AI Stock Analyzer for Gradio with robust error handling"""
def __init__(self):
self.context_length = 32
self.prediction_length = 7
self.device = "cpu"
self.model_cache = {}
def fetch_stock_data(self, symbol: str, period: str = "6mo") -> Tuple[Optional[pd.DataFrame], Optional[Dict]]:
"""Fetch stock data with error handling"""
try:
ticker = yf.Ticker(symbol)
data = ticker.history(period=period, interval="1d",
actions=False, auto_adjust=True,
back_adjust=False, repair=False)
if data.empty:
return None, None
try:
info = {
'longName': ticker.info.get('longName', symbol),
'sector': ticker.info.get('sector', 'Unknown'),
'marketCap': ticker.info.get('marketCap', 0)
}
except:
info = {'longName': symbol, 'sector': 'Unknown', 'marketCap': 0}
return data, info
except Exception as e:
return None, None
def load_chronos_tiny(self) -> Tuple[Optional[Any], str]:
"""Load Chronos model with caching and fallback"""
model_key = "chronos_tiny"
if model_key in self.model_cache:
return self.model_cache[model_key], "chronos"
try:
from chronos import ChronosPipeline
# Try primary loading method
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-tiny",
device_map="cpu",
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=True
)
self.model_cache[model_key] = pipeline
return pipeline, "chronos"
except ImportError:
# Chronos not available
return None, None
except Exception as e:
# Try fallback loading method
try:
pipeline = ChronosPipeline.from_pretrained(
"amazon/chronos-t5-tiny",
device_map="auto",
torch_dtype=torch.float32
)
self.model_cache[model_key] = pipeline
return pipeline, "chronos"
except:
return None, None
def load_moirai_small(self) -> Tuple[Optional[Any], str]:
"""Load Moirai model with updated method and fallbacks"""
model_key = "moirai_small"
if model_key in self.model_cache:
return self.model_cache[model_key], "moirai"
try:
from uni2ts.model.moirai import MoiraiForecast, MoiraiModule
# Method 1: Try the standard approach
try:
module = MoiraiModule.from_pretrained(
"Salesforce/moirai-1.0-R-small",
device_map="cpu",
torch_dtype=torch.float32,
trust_remote_code=True,
low_cpu_mem_usage=True
)
model = MoiraiForecast(
module=module,
prediction_length=self.prediction_length,
context_length=self.context_length,
patch_size="auto",
num_samples=10,
target_dim=1,
feat_dynamic_real_dim=0,
past_feat_dynamic_real_dim=0
)
self.model_cache[model_key] = model
return model, "moirai"
except Exception as e1:
# Method 2: Try newer version
try:
module = MoiraiModule.from_pretrained(
"Salesforce/moirai-1.1-R-small",
device_map="cpu",
torch_dtype=torch.float32,
trust_remote_code=True
)
model = MoiraiForecast(
module=module,
prediction_length=self.prediction_length,
context_length=self.context_length,
patch_size="auto",
num_samples=5, # Reduced for stability
target_dim=1,
feat_dynamic_real_dim=0,
past_feat_dynamic_real_dim=0
)
self.model_cache[model_key] = model
return model, "moirai"
except Exception as e2:
# Method 3: Minimal configuration
try:
module = MoiraiModule.from_pretrained("Salesforce/moirai-1.0-R-small")
model = MoiraiForecast(
module=module,
prediction_length=7,
context_length=32,
patch_size="auto",
num_samples=5,
target_dim=1
)
self.model_cache[model_key] = model
return model, "moirai"
except Exception as e3:
return None, None
except ImportError:
# uni2ts not available
return None, None
except Exception as e:
return None, None
def predict_chronos_fast(self, pipeline: Any, data: np.ndarray) -> Optional[Dict]:
"""Fast Chronos prediction with error handling"""
try:
context_data = data[-self.context_length:]
context = torch.tensor(context_data, dtype=torch.float32).unsqueeze(0)
with torch.no_grad():
forecast = pipeline.predict(
context=context,
prediction_length=self.prediction_length,
num_samples=10,
temperature=1.0,
top_k=50,
top_p=1.0
)
forecast_array = forecast[0].numpy()
predictions = {
'mean': np.median(forecast_array, axis=0),
'q10': np.quantile(forecast_array, 0.1, axis=0),
'q90': np.quantile(forecast_array, 0.9, axis=0),
'std': np.std(forecast_array, axis=0)
}
return predictions
except Exception as e:
return None
def predict_moirai_fast(self, model: Any, data: np.ndarray) -> Optional[Dict]:
"""Fast Moirai prediction with enhanced error handling"""
try:
from gluonts.dataset.common import ListDataset
# Prepare dataset with minimal configuration
dataset = ListDataset([{
"item_id": "stock",
"start": "2023-01-01",
"target": data[-self.context_length:].tolist()
}], freq='D')
# Create predictor with safe parameters
predictor = model.create_predictor(
batch_size=1,
num_parallel_samples=5 # Further reduced for stability
)
# Generate forecast
forecasts = list(predictor.predict(dataset))
if not forecasts:
return None
forecast = forecasts[0]
predictions = {
'mean': forecast.mean,
'q10': forecast.quantile(0.1),
'q90': forecast.quantile(0.9),
'std': np.std(forecast.samples, axis=0) if hasattr(forecast, 'samples') else np.zeros(7)
}
return predictions
except Exception as e:
return None
def generate_simple_prediction(self, data: np.ndarray) -> Dict:
"""Fallback prediction method using simple statistical models"""
try:
# Simple moving average with trend
recent_data = data[-30:] # Last 30 days
short_ma = np.mean(recent_data[-7:]) # 7-day average
long_ma = np.mean(recent_data[-21:]) # 21-day average
# Calculate trend
trend = (short_ma - long_ma) / long_ma if long_ma != 0 else 0
# Generate predictions
current_price = data[-1]
predictions = []
for i in range(7):
# Simple trend projection with some noise
predicted_price = current_price * (1 + trend * (i + 1) * 0.1)
predictions.append(predicted_price)
predictions = np.array(predictions)
return {
'mean': predictions,
'q10': predictions * 0.95, # 5% lower
'q90': predictions * 1.05, # 5% higher
'std': np.full(7, np.std(recent_data) * 0.5)
}
except Exception:
# Ultimate fallback - flat prediction
current_price = data[-1]
return {
'mean': np.full(7, current_price),
'q10': np.full(7, current_price * 0.98),
'q90': np.full(7, current_price * 1.02),
'std': np.full(7, 0.01)
}
# Initialize analyzer globally for caching
analyzer = FastAIStockAnalyzer()
def analyze_stock(stock_symbol, model_choice, investment_amount, progress=gr.Progress()):
"""Main analysis function with comprehensive error handling and fallbacks"""
try:
progress(0.1, desc="Fetching stock data...")
# Validate input
if not stock_symbol or stock_symbol.strip() == "":
return (
"❌ Error: Please enter a valid stock symbol.",
None,
"❌ Invalid Input",
"N/A",
"N/A"
)
# Fetch data
stock_data, stock_info = analyzer.fetch_stock_data(stock_symbol.upper())
if stock_data is None or len(stock_data) < 50:
return (
f"❌ Error: Insufficient data for {stock_symbol.upper()}. Please check the stock symbol or try a different one.",
None,
"❌ Data Error",
"N/A",
"N/A"
)
current_price = stock_data['Close'].iloc[-1]
company_name = stock_info.get('longName', stock_symbol) if stock_info else stock_symbol
progress(0.3, desc="Loading AI model...")
# Determine model type and load
model_type = "chronos" if "Chronos" in model_choice else "moirai"
model = None
model_name = ""
prediction_method = None
if model_type == "chronos":
model, loaded_type = analyzer.load_chronos_tiny()
model_name = "Amazon Chronos Tiny"
prediction_method = "chronos"
else:
model, loaded_type = analyzer.load_moirai_small()
model_name = "Salesforce Moirai Small"
prediction_method = "moirai"
# Fallback to Chronos if Moirai fails
if model is None:
progress(0.4, desc="Moirai unavailable, switching to Chronos...")
model, loaded_type = analyzer.load_chronos_tiny()
model_name = "Amazon Chronos Tiny (Fallback)"
prediction_method = "chronos"
# If both models fail, use simple prediction
if model is None:
progress(0.5, desc="Using statistical fallback method...")
model_name = "Statistical Trend Model (Fallback)"
prediction_method = "simple"
progress(0.6, desc="Generating predictions...")
# Generate predictions based on available method
predictions = None
if prediction_method == "chronos" and model is not None:
predictions = analyzer.predict_chronos_fast(model, stock_data['Close'].values)
elif prediction_method == "moirai" and model is not None:
predictions = analyzer.predict_moirai_fast(model, stock_data['Close'].values)
# Use simple prediction if AI models fail
if predictions is None:
predictions = analyzer.generate_simple_prediction(stock_data['Close'].values)
model_name = "Statistical Trend Model (AI Models Unavailable)"
progress(0.8, desc="Calculating investment scenarios...")
# Analysis results
mean_pred = predictions['mean']
final_pred = mean_pred[-1]
week_change = ((final_pred - current_price) / current_price) * 100
# Decision logic
if week_change > 5:
decision = "🟒 STRONG BUY"
explanation = "Model expects significant gains!"
elif week_change > 2:
decision = "🟒 BUY"
explanation = "Model expects moderate gains"
elif week_change < -5:
decision = "πŸ”΄ STRONG SELL"
explanation = "Model expects significant losses"
elif week_change < -2:
decision = "πŸ”΄ SELL"
explanation = "Model expects losses"
else:
decision = "βšͺ HOLD"
explanation = "Model expects stable prices"
# Create analysis text
analysis_text = f"""
# 🎯 {company_name} ({stock_symbol.upper()}) Analysis
## πŸ€– RECOMMENDATION: {decision}
**{explanation}**
*Powered by {model_name}*
## πŸ“Š Key Metrics
- **Current Price**: ${current_price:.2f}
- **7-Day Prediction**: ${final_pred:.2f} ({week_change:+.2f}%)
- **Confidence Level**: {min(100, max(50, 70 + abs(week_change) * 1.5)):.0f}%
- **Analysis Method**: {model_name}
## πŸ’° Investment Scenario (${investment_amount:,.0f})
- **Shares**: {investment_amount/current_price:.2f}
- **Current Value**: ${investment_amount:,.2f}
- **Predicted Value**: ${investment_amount + ((final_pred - current_price) * (investment_amount/current_price)):,.2f}
- **Profit/Loss**: ${((final_pred - current_price) * (investment_amount/current_price)):+,.2f} ({week_change:+.2f}%)
## ⚠️ Important Disclaimers
- **This is for educational purposes only**
- **Not financial advice - consult professionals**
- **AI predictions can be wrong - invest responsibly**
- **Past performance β‰  future results**
"""
progress(0.9, desc="Creating visualizations...")
# Create chart
fig = go.Figure()
# Historical data (last 30 days)
recent = stock_data.tail(30)
fig.add_trace(go.Scatter(
x=recent.index,
y=recent['Close'],
mode='lines',
name='Historical Price',
line=dict(color='blue', width=2)
))
# Predictions
future_dates = pd.date_range(
start=stock_data.index[-1] + pd.Timedelta(days=1),
periods=7,
freq='D'
)
fig.add_trace(go.Scatter(
x=future_dates,
y=mean_pred,
mode='lines+markers',
name='Prediction',
line=dict(color='red', width=3),
marker=dict(size=8)
))
# Confidence bands
if 'q10' in predictions and 'q90' in predictions:
fig.add_trace(go.Scatter(
x=future_dates.tolist() + future_dates[::-1].tolist(),
y=predictions['q90'].tolist() + predictions['q10'][::-1].tolist(),
fill='toself',
fillcolor='rgba(255,0,0,0.1)',
line=dict(color='rgba(255,255,255,0)'),
name='Confidence Range',
showlegend=True
))
fig.update_layout(
title=f"{stock_symbol.upper()} - Stock Forecast ({model_name})",
xaxis_title="Date",
yaxis_title="Price ($)",
height=500,
showlegend=True,
template="plotly_white"
)
progress(1.0, desc="Analysis complete!")
# Create summary metrics
try:
day_change = stock_data['Close'].iloc[-1] - stock_data['Close'].iloc[-2]
day_change_pct = (day_change / stock_data['Close'].iloc[-2]) * 100
except:
day_change_pct = 0
current_metrics = f"${current_price:.2f} ({day_change_pct:+.2f}%)"
prediction_metrics = f"${final_pred:.2f} ({week_change:+.2f}%)"
return (
analysis_text,
fig,
decision,
current_metrics,
prediction_metrics
)
except Exception as e:
# Ultimate error handler
error_msg = f"""
# ❌ Analysis Error
**Something went wrong during the analysis:**
- **Error**: {str(e)[:200]}...
- **Stock**: {stock_symbol}
- **Model**: {model_choice}
## πŸ”§ Try these solutions:
1. **Check stock symbol** - Make sure it's valid (e.g., AAPL, GOOGL)
2. **Try different model** - Switch between Chronos and Moirai
3. **Refresh and try again** - Temporary server issues
4. **Use popular stocks** - AAPL, MSFT, GOOGL work best
## πŸ“ž Still having issues?
This may be due to Hugging Face Spaces resource limitations or model availability.
"""
return (
error_msg,
None,
"❌ Error",
"N/A",
"N/A"
)
# Create Gradio interface with enhanced UI
with gr.Blocks(
theme=gr.themes.Soft(),
title="⚑ Fast AI Stock Predictor",
css="""
footer {visibility: hidden}
.gradio-container {max-width: 1200px; margin: auto;}
.main-header {text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 20px;}
.disclaimer {background-color: #fff3cd; border: 1px solid #ffeaa7; padding: 15px; border-radius: 8px; margin: 10px 0;}
"""
) as demo:
gr.HTML("""
<div class="main-header">
<h1 style="margin: 0; font-size: 2.5em;">⚑ AI Stock Predictor</h1>
<p style="margin: 10px 0 0 0; font-size: 1.2em;"><strong>πŸ€– Powered by Amazon Chronos & Salesforce Moirai</strong></p>
<p style="margin: 5px 0 0 0; opacity: 0.9;">Advanced AI models for stock price forecasting</p>
</div>
""")
gr.HTML("""
<div class="disclaimer">
<strong>⚠️ IMPORTANT DISCLAIMER:</strong> This tool is for educational purposes only.
Not financial advice. AI predictions can be wrong. Always consult financial professionals
before making investment decisions. Only invest what you can afford to lose.
</div>
""")
with gr.Row():
with gr.Column(scale=1, min_width=300):
gr.HTML("<h3>🎯 Analysis Configuration</h3>")
stock_input = gr.Dropdown(
choices=["AAPL", "GOOGL", "MSFT", "TSLA", "AMZN", "META", "NFLX", "NVDA", "ORCL", "CRM"],
value="AAPL",
label="πŸ“ˆ Select Stock Symbol",
allow_custom_value=True,
info="Choose popular stocks or enter any valid symbol"
)
model_input = gr.Radio(
choices=["πŸš€ Chronos (Fast & Reliable)", "🎯 Moirai (Advanced)"],
value="πŸš€ Chronos (Fast & Reliable)",
label="πŸ€– AI Model Selection",
info="Chronos: Faster, more stable | Moirai: More sophisticated (may fallback to Chronos)"
)
investment_input = gr.Slider(
minimum=500,
maximum=100000,
value=5000,
step=500,
label="πŸ’° Investment Amount ($)",
info="Amount for profit/loss calculation"
)
analyze_btn = gr.Button(
"πŸš€ Analyze Stock Now",
variant="primary",
size="lg",
scale=1
)
gr.HTML("<br>")
# Quick stats
with gr.Group():
gr.HTML("<h4>πŸ“Š Quick Metrics</h4>")
current_price_display = gr.Textbox(
label="Current Price",
interactive=False,
container=True
)
prediction_display = gr.Textbox(
label="7-Day Prediction",
interactive=False,
container=True
)
decision_display = gr.Textbox(
label="AI Recommendation",
interactive=False,
container=True
)
with gr.Column(scale=2, min_width=600):
gr.HTML("<h3>πŸ“Š Analysis Results</h3>")
analysis_output = gr.Markdown(
value="""
# πŸ‘‹ Welcome to AI Stock Predictor!
**Ready to analyze stocks with cutting-edge AI?**
🎯 **How to use:**
1. Select a stock symbol (or enter your own)
2. Choose AI model (Chronos recommended for beginners)
3. Set investment amount for scenario analysis
4. Click "Analyze Stock Now"
πŸ’‘ **Tips:**
- Try popular stocks like AAPL, GOOGL, MSFT first
- Chronos model is faster and more reliable
- Analysis takes 30-60 seconds for first-time model loading
⚑ **Click the button to get started!**
""",
container=True
)
with gr.Row():
chart_output = gr.Plot(
label="πŸ“ˆ Stock Price Chart & AI Predictions",
container=True,
show_label=True
)
# Event handlers
analyze_btn.click(
fn=analyze_stock,
inputs=[stock_input, model_input, investment_input],
outputs=[
analysis_output,
chart_output,
decision_display,
current_price_display,
prediction_display
],
show_progress=True
)
# Examples section
gr.HTML("<h3>🎭 Try These Examples</h3>")
gr.Examples(
examples=[
["AAPL", "πŸš€ Chronos (Fast & Reliable)", 5000],
["TSLA", "🎯 Moirai (Advanced)", 10000],
["GOOGL", "πŸš€ Chronos (Fast & Reliable)", 2500],
["MSFT", "🎯 Moirai (Advanced)", 7500],
["NVDA", "πŸš€ Chronos (Fast & Reliable)", 3000],
],
inputs=[stock_input, model_input, investment_input],
label="Click any example to load it:",
examples_per_page=5
)
# Footer
gr.HTML("""
<div style="text-align: center; padding: 20px; margin-top: 30px; border-top: 1px solid #eee;">
<p><strong>πŸ€– AI Stock Predictor</strong> | Built with ❀️ using Gradio & Hugging Face</p>
<p style="font-size: 12px; color: #666;">
Powered by Amazon Chronos & Salesforce Moirai |
Educational Tool - Not Financial Advice
</p>
</div>
""")
# Launch configuration
if __name__ == "__main__":
# Enable queue using the new method
#demo.queue(max_size=20) # Optional: set max queue size
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
max_threads=10
)