import streamlit as st from transformers import BartForConditionalGeneration, BartTokenizer st.set_page_config(page_title="BART Text Summarization", layout="centered") @st.cache_resource def load_model(): model = BartForConditionalGeneration.from_pretrained("Arjun9/bart_samsum") tokenizer = BartTokenizer.from_pretrained("Arjun9/bart_samsum") return model, tokenizer model, tokenizer = load_model() def main(): st.title("Meeting summarization") # Get user input input_text = st.text_area("Enter text to summarize", height=200) if st.button("Summarize"): # Tokenize the input text inputs = tokenizer(input_text, return_tensors="pt", truncation=True) # Generate summary summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=100, early_stopping=True) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) # Display the summary st.write(f"Summary: {summary}") if __name__ == "__main__": main()