Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,23 +10,31 @@ model = torch.jit.load(model_path, map_location=torch.device('cpu'))
|
|
10 |
# Define the prediction function
|
11 |
def predict(image):
|
12 |
try:
|
|
|
|
|
13 |
# Preprocess image
|
14 |
image = image.convert("RGB")
|
15 |
input_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
16 |
|
|
|
|
|
17 |
# Run the model
|
18 |
with torch.no_grad():
|
19 |
output = model(input_tensor)
|
|
|
|
|
20 |
|
21 |
# Postprocess the output
|
22 |
output_image = output.squeeze().permute(1, 2, 0).numpy()
|
23 |
output_image = (output_image * 255).astype(np.uint8)
|
|
|
|
|
24 |
return Image.fromarray(output_image)
|
25 |
|
26 |
except Exception as e:
|
27 |
-
# Print the error for debugging
|
28 |
print(f"Error during prediction: {str(e)}")
|
29 |
-
return None
|
|
|
30 |
|
31 |
# Gradio Interface
|
32 |
iface = gr.Interface(
|
|
|
10 |
# Define the prediction function
|
11 |
def predict(image):
|
12 |
try:
|
13 |
+
print("Predict function called") # Check if the function is being called
|
14 |
+
|
15 |
# Preprocess image
|
16 |
image = image.convert("RGB")
|
17 |
input_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
|
18 |
|
19 |
+
print("Image preprocessed") # Check if preprocessing is successful
|
20 |
+
|
21 |
# Run the model
|
22 |
with torch.no_grad():
|
23 |
output = model(input_tensor)
|
24 |
+
|
25 |
+
print("Model executed") # Check if model execution is successful
|
26 |
|
27 |
# Postprocess the output
|
28 |
output_image = output.squeeze().permute(1, 2, 0).numpy()
|
29 |
output_image = (output_image * 255).astype(np.uint8)
|
30 |
+
|
31 |
+
print("Output generated") # Check if postprocessing is successful
|
32 |
return Image.fromarray(output_image)
|
33 |
|
34 |
except Exception as e:
|
|
|
35 |
print(f"Error during prediction: {str(e)}")
|
36 |
+
return None
|
37 |
+
|
38 |
|
39 |
# Gradio Interface
|
40 |
iface = gr.Interface(
|