Spaces:
Runtime error
Runtime error
File size: 1,125 Bytes
caff9fa 389db8f b0b4e93 caff9fa 389db8f b0b4e93 389db8f b0b4e93 389db8f caff9fa 389db8f caff9fa 389db8f caff9fa 389db8f b0b4e93 389db8f b0b4e93 389db8f b0b4e93 389db8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import gradio as gr
from PIL import Image
import requests
from io import BytesIO
# Load the model
model_url = "https://huggingface.co/facebook/sapiens/resolve/main/sapiens_lite_host/torchscript/normal/checkpoints/sapiens_0.3b/sapiens_0.3b.pt"
model = torch.jit.load(model_url, map_location=torch.device('cpu'))
# Define inference function
def predict(image):
# Preprocess image
image = image.convert("RGB")
input_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).unsqueeze(0).float() / 255.0
# Run model
with torch.no_grad():
output = model(input_tensor)
# Postprocess output
output_image = output.squeeze().permute(1, 2, 0).numpy()
output_image = (output_image * 255).astype(np.uint8)
return Image.fromarray(output_image)
# Gradio Interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=gr.Image(type="pil"),
title="Sapiens Body Part Segmentation",
description="Upload an image to segment body parts using the Sapiens model."
)
# Launch the interface
if __name__ == "__main__":
iface.launch()
|