File size: 7,236 Bytes
e8c3b4c
 
f2eda42
5ba9dc3
 
 
 
 
 
 
 
e8c3b4c
 
 
5ba9dc3
d76cd6f
5ba9dc3
 
 
 
 
 
 
 
f2eda42
 
5ba9dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2eda42
5ba9dc3
 
 
 
f2eda42
5ba9dc3
 
e8c3b4c
 
5ba9dc3
 
 
068f983
5ba9dc3
 
 
 
 
 
 
 
 
 
 
068f983
5ba9dc3
 
 
e8c3b4c
5ba9dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8c3b4c
5ba9dc3
 
 
 
 
 
e8c3b4c
 
5ba9dc3
e8c3b4c
068f983
5ba9dc3
 
068f983
5ba9dc3
e8c3b4c
 
 
 
 
5ba9dc3
068f983
5ba9dc3
e8c3b4c
 
 
 
 
 
 
 
 
 
 
5ba9dc3
e8c3b4c
5ba9dc3
 
 
e8c3b4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-

import os
import re
import sys
import typing as tp

import torch
import pysbd
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import unicodedata
import time



#hy_segmenter = pysbd.Segmenter(language="hy", clean=False) not needed

MODEL_NAME = "AriNubar/nllb-200-distilled-600m-en-hyw"

LANGUAGES = {
    "Արեւմտահայերէն | Western Armenian": "hyw_Armn",
    "Անգլերէն | English": "eng_Latn",
}

HF_TOKEN = os.environ.get("HF_TOKEN")

def get_non_printing_char_replacer(replace_by: str = " "):
    non_printable_map = {
        ord(c): replace_by
        for c in (chr(i) for i in range(sys.maxunicode + 1))
        # same as \p{C} in perl
        # see https://www.unicode.org/reports/tr44/#General_Category_Values
        if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
    }

    def replace_non_printing_char(line) -> str:
        return line.translate(non_printable_map)

    return replace_non_printing_char

def clean_text(text: str, lang) -> str:
    HYW_CHARS_TO_NORMALIZE = {
        "«": '"',
        "»": '"',
        "“": '"',
        "”": '"',
        "’": "'",
        "‘": "'",
        "–": "-",
        "—": "-",
        "ՙ": "'",
        "՚": "'",
    }    

    DOUBLE_CHARS_TO_NORMALIZE = {
        "Կ՛": "Կ'",
        "կ՛": "կ'",        
        "Չ՛": "Չ'",
        "չ՛": "չ'",
        "Մ՛": "Մ'",
        "մ՛": "մ'",
    }
    replace_nonprint = get_non_printing_char_replacer()

    text = replace_nonprint(text)
    # print(text)
    text = text.replace("\t", " ").replace("\n", " ").replace("\r", " ").replace(r"[^\x00-\x7F]+", " ").replace(r"\s+", " ")
    text = text.strip()

    if lang == "hyw_Armn":
        text = text.translate(str.maketrans(HYW_CHARS_TO_NORMALIZE))
        for k, v in DOUBLE_CHARS_TO_NORMALIZE.items():
            text = text.replace(k, v)
    
    return text

def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
    if fix_double_space:
        text = re.sub(r"\s+", " ", text)
    text = text.strip()

    sentences = splitter.segment(text)

    fillers = []
    i = 0

    for sent in sentences:
        start_idx = text.find(sent, i)
        if ignore_errors and start_idx == -1:
            start_idx = i + 1
        assert start_idx != -1, f"Sent not found after index {i} in text: {text}"

        fillers.append(text[i:start_idx])
        i = start_idx + len(sent)
    
    fillers.append(text[i:])
    return sentences, fillers

def init_tokenizer(tokenizer, new_lang='hyw_Armn'):
    """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
    old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
    tokenizer.lang_code_to_id[new_lang] = old_len-1
    tokenizer.id_to_lang_code[old_len-1] = new_lang
    # always move "mask" to the last position
    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset

    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
    if new_lang not in tokenizer._additional_special_tokens:
        tokenizer._additional_special_tokens.append(new_lang)
    # clear the added token encoder; otherwise a new token may end up there by mistake
    tokenizer.added_tokens_encoder = {}
    tokenizer.added_tokens_decoder = {}

class Translator:
    def __init__(self) -> None:
        self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME, token=HF_TOKEN)

        if torch.cuda.is_available():
            self.model = self.model.cuda()
        
        self.tokenizer = NllbTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
        init_tokenizer(self.tokenizer)

        self.hyw_splitter = pysbd.Segmenter(language="hy", clean=True)
        self.eng_splitter = pysbd.Segmenter(language="en", clean=True)
        self.languages = LANGUAGES
    

    def translate_single(
        self,
        text,
        src_lang,
        tgt_lang,
        max_length="auto",
        num_beams=4,
        n_out=None,
        **kwargs,
    ):
        self.tokenizer.src_lang = src_lang
        encoded = self.tokenizer(
            text, return_tensors="pt", truncation=True, max_length=256
        )
        if max_length == "auto":
            max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
        
        generated_tokens = self.model.generate(
            **encoded.to(self.model.device),
            forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
            max_length=max_length,
            num_beams=num_beams,
            num_return_sequences=n_out or 1,
            **kwargs,
        )
        out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
        if isinstance(text, str) and n_out is None:
            return out[0]
        return out


    def translate(self, text: str,
                  src_lang: str,
                  tgt_lang: str,
                  max_length=256,
                  num_beams=4,
                  by_sentence=True,
                  clean=True,
                  **kwargs):
        
        if by_sentence:
            if src_lang == "eng_Latn":
                sents = self.eng_splitter.segment(text)
            elif src_lang == "hyw_Armn":
                sents = self.hyw_splitter.segment(text)


        if clean:
            sents = [clean_text(sent, src_lang) for sent in sents]


        if len(sents) > 1:
            results = self.translate_batch(sents, src_lang, tgt_lang, num_beams=num_beams, max_length=max_length, **kwargs)
        else:
            results = self.translate_single(sents, src_lang, tgt_lang, max_length=max_length, num_beams=num_beams, **kwargs)

        return " ".join(results)
    
    def translate_batch(self, texts, src_lang, tgt_lang, num_beams=4, max_length=256, **kwargs):
        self.tokenizer.src_lang = src_lang

        if torch.cuda.is_available():
            inputs = self.tokenizer(texts, return_tensors="pt", max_length=max_length, padding=True, truncation=True).input_ids.to("cuda")
            translated_tokens = self.model.generate(inputs, num_beams=num_beams, forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang])
        else:
            inputs = self.tokenizer(texts, return_tensors="pt", max_length=max_length, padding=True, truncation=True)
            translated_tokens = self.model.generate(**inputs, num_beams=num_beams, forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang])
        return self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)

if __name__ == "__main__":

    print("Initializing translator...")
    translator = Translator()
    print("Translator initialized.")

    start_time = time.time()
    print(translator.translate("Hello world!", "eng_Latn", "hyw_Armn"))
    print("Time elapsed: ", time.time() - start_time)
    
    start_time = time.time()
    print(translator.translate("I am the greatest translator! Do not fuck with me!", "eng_Latn", "hyw_Armn"))
    print("Time elapsed: ", time.time() - start_time)