File size: 805 Bytes
4932e02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Federated Learning for Privacy-Preserving Financial Data Generation with RAG Integration

This project implements a federated learning framework combined with a Retrieval-Augmented Generation (RAG) system to generate privacy-preserving synthetic financial data.

## Features

- Federated Learning using TensorFlow Federated
- Privacy-preserving data generation using VAE/GAN
- RAG integration for enhanced data quality
- Secure Multi-Party Computation (SMPC)
- Differential Privacy implementation
- Kubernetes-based deployment
- Comprehensive monitoring and logging

## Installation

```bash
pip install -r requirements.txt
```

## Usage

[Add usage instructions here]

## Project Structure

[Add project structure description here]

## License

MIT

## Contributing

[Add contributing guidelines here]