Transcendental-Programmer
commited on
Commit
Β·
e3af1ef
1
Parent(s):
24f4867
Refactor core logic: move and modularize all latent space, sampling, and utility code into faceforge_core/
Browse files- {latent_space_explorer β faceforge_core}/__init__.py +0 -0
- faceforge_core/attribute_directions.py +35 -0
- faceforge_core/custom_loss.py +26 -0
- {latent_space_explorer β faceforge_core}/fast_sd.py +0 -0
- {latent_space_explorer β faceforge_core}/game_objects.py +0 -0
- {latent_space_explorer β faceforge_core}/hacked_sdxl_pipeline.py +0 -0
- faceforge_core/latent_explorer.py +71 -0
- {latent_space_explorer β faceforge_core}/sampling.py +0 -0
- {latent_space_explorer β faceforge_core}/utils.py +0 -0
{latent_space_explorer β faceforge_core}/__init__.py
RENAMED
|
File without changes
|
faceforge_core/attribute_directions.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from typing import Tuple, List, Optional
|
| 3 |
+
from sklearn.decomposition import PCA
|
| 4 |
+
from sklearn.linear_model import LogisticRegression
|
| 5 |
+
|
| 6 |
+
class LatentDirectionFinder:
|
| 7 |
+
"""
|
| 8 |
+
Provides methods to discover semantic directions in latent space using PCA or classifier-based approaches.
|
| 9 |
+
"""
|
| 10 |
+
def __init__(self, latent_vectors: np.ndarray):
|
| 11 |
+
"""
|
| 12 |
+
:param latent_vectors: Array of shape (N, D) where N is the number of samples and D is the latent dimension.
|
| 13 |
+
"""
|
| 14 |
+
self.latent_vectors = latent_vectors
|
| 15 |
+
|
| 16 |
+
def pca_direction(self, n_components: int = 10) -> Tuple[np.ndarray, np.ndarray]:
|
| 17 |
+
"""
|
| 18 |
+
Perform PCA on the latent vectors to find principal directions.
|
| 19 |
+
:return: (components, explained_variance)
|
| 20 |
+
"""
|
| 21 |
+
pca = PCA(n_components=n_components)
|
| 22 |
+
pca.fit(self.latent_vectors)
|
| 23 |
+
return pca.components_, pca.explained_variance_ratio_
|
| 24 |
+
|
| 25 |
+
def classifier_direction(self, labels: List[int]) -> np.ndarray:
|
| 26 |
+
"""
|
| 27 |
+
Fit a linear classifier to find a direction separating two classes in latent space.
|
| 28 |
+
:param labels: List of 0/1 labels for each latent vector.
|
| 29 |
+
:return: Normalized direction vector (D,)
|
| 30 |
+
"""
|
| 31 |
+
clf = LogisticRegression()
|
| 32 |
+
clf.fit(self.latent_vectors, labels)
|
| 33 |
+
direction = clf.coef_[0]
|
| 34 |
+
direction = direction / np.linalg.norm(direction)
|
| 35 |
+
return direction
|
faceforge_core/custom_loss.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from typing import Callable
|
| 4 |
+
|
| 5 |
+
def attribute_preserving_loss(
|
| 6 |
+
generated: torch.Tensor,
|
| 7 |
+
original: torch.Tensor,
|
| 8 |
+
attr_predictor: Callable[[torch.Tensor], torch.Tensor],
|
| 9 |
+
y_target: torch.Tensor,
|
| 10 |
+
lambda_pred: float = 1.0,
|
| 11 |
+
lambda_recon: float = 1.0
|
| 12 |
+
) -> torch.Tensor:
|
| 13 |
+
"""
|
| 14 |
+
Custom loss enforcing attribute fidelity and identity preservation.
|
| 15 |
+
L_attr(G(z + alpha d)) = lambda_pred * ||f_attr(G(.)) - y_target||^2 + lambda_recon * ||G(z + alpha d) - G(z)||^2
|
| 16 |
+
:param generated: Generated image tensor (B, ...)
|
| 17 |
+
:param original: Original image tensor (B, ...)
|
| 18 |
+
:param attr_predictor: Function mapping image tensor to attribute prediction
|
| 19 |
+
:param y_target: Target attribute value tensor (B, ...)
|
| 20 |
+
:param lambda_pred: Weight for attribute prediction loss
|
| 21 |
+
:param lambda_recon: Weight for reconstruction loss
|
| 22 |
+
:return: Scalar loss tensor
|
| 23 |
+
"""
|
| 24 |
+
pred_loss = torch.nn.functional.mse_loss(attr_predictor(generated), y_target)
|
| 25 |
+
recon_loss = torch.nn.functional.mse_loss(generated, original)
|
| 26 |
+
return lambda_pred * pred_loss + lambda_recon * recon_loss
|
{latent_space_explorer β faceforge_core}/fast_sd.py
RENAMED
|
File without changes
|
{latent_space_explorer β faceforge_core}/game_objects.py
RENAMED
|
File without changes
|
{latent_space_explorer β faceforge_core}/hacked_sdxl_pipeline.py
RENAMED
|
File without changes
|
faceforge_core/latent_explorer.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from typing import List, Optional, Tuple
|
| 3 |
+
|
| 4 |
+
class LatentPoint:
|
| 5 |
+
"""
|
| 6 |
+
Represents a point in latent space with an associated prompt and encoding.
|
| 7 |
+
"""
|
| 8 |
+
def __init__(self, text: str, encoding: Optional[np.ndarray], xy_pos: Optional[Tuple[float, float]] = None):
|
| 9 |
+
self.text = text
|
| 10 |
+
self.encoding = encoding
|
| 11 |
+
self.xy_pos = xy_pos if xy_pos is not None else (0.0, 0.0)
|
| 12 |
+
|
| 13 |
+
def move(self, new_xy_pos: Tuple[float, float]):
|
| 14 |
+
self.xy_pos = new_xy_pos
|
| 15 |
+
|
| 16 |
+
class LatentSpaceExplorer:
|
| 17 |
+
"""
|
| 18 |
+
Core logic for managing points in latent space and sampling new points.
|
| 19 |
+
"""
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.points: List[LatentPoint] = []
|
| 22 |
+
self.selected_point_idx: Optional[int] = None
|
| 23 |
+
|
| 24 |
+
def add_point(self, text: str, encoding: Optional[np.ndarray], xy_pos: Optional[Tuple[float, float]] = None):
|
| 25 |
+
self.points.append(LatentPoint(text, encoding, xy_pos))
|
| 26 |
+
|
| 27 |
+
def delete_point(self, idx: int):
|
| 28 |
+
if 0 <= idx < len(self.points):
|
| 29 |
+
del self.points[idx]
|
| 30 |
+
|
| 31 |
+
def modify_point(self, idx: int, new_text: str, new_encoding: Optional[np.ndarray]):
|
| 32 |
+
if 0 <= idx < len(self.points):
|
| 33 |
+
self.points[idx].text = new_text
|
| 34 |
+
self.points[idx].encoding = new_encoding
|
| 35 |
+
|
| 36 |
+
def get_encodings(self) -> List[Optional[np.ndarray]]:
|
| 37 |
+
return [p.encoding for p in self.points]
|
| 38 |
+
|
| 39 |
+
def get_prompts(self) -> List[str]:
|
| 40 |
+
return [p.text for p in self.points]
|
| 41 |
+
|
| 42 |
+
def get_positions(self) -> np.ndarray:
|
| 43 |
+
return np.array([p.xy_pos for p in self.points])
|
| 44 |
+
|
| 45 |
+
def sample_encoding(self, point: Tuple[float, float], mode: str = "distance") -> Optional[np.ndarray]:
|
| 46 |
+
"""
|
| 47 |
+
Sample a new encoding based on the given point and mode.
|
| 48 |
+
"""
|
| 49 |
+
encodings = self.get_encodings()
|
| 50 |
+
positions = self.get_positions()
|
| 51 |
+
if not encodings or len(encodings) == 0:
|
| 52 |
+
return None
|
| 53 |
+
if mode == "distance":
|
| 54 |
+
dists = np.linalg.norm(positions - np.array(point), axis=1)
|
| 55 |
+
coefs = 1.0 / (1.0 + dists ** 2)
|
| 56 |
+
elif mode == "circle":
|
| 57 |
+
point_vec = np.array(point)
|
| 58 |
+
positions_vec = positions
|
| 59 |
+
coefs = np.dot(positions_vec, point_vec)
|
| 60 |
+
else:
|
| 61 |
+
raise ValueError(f"Unknown sampling mode: {mode}")
|
| 62 |
+
coefs = coefs / np.sum(coefs)
|
| 63 |
+
# Weighted sum of encodings
|
| 64 |
+
result = None
|
| 65 |
+
for coef, enc in zip(coefs, encodings):
|
| 66 |
+
if enc is not None:
|
| 67 |
+
if result is None:
|
| 68 |
+
result = coef * enc
|
| 69 |
+
else:
|
| 70 |
+
result += coef * enc
|
| 71 |
+
return result
|
{latent_space_explorer β faceforge_core}/sampling.py
RENAMED
|
File without changes
|
{latent_space_explorer β faceforge_core}/utils.py
RENAMED
|
File without changes
|