“Transcendental-Programmer”
commited on
Commit
·
2bf5660
1
Parent(s):
c70fcb3
feat: added requirements and sampling
Browse files- latent_space_explorer/sampling.py +69 -0
- latent_space_explorer/utils.py +41 -0
- main.py +20 -0
- requirements.txt +4 -0
latent_space_explorer/sampling.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
from .utils import recursive_find_device, recursive_find_dtype
|
| 7 |
+
|
| 8 |
+
class EncodingSampler:
|
| 9 |
+
"""
|
| 10 |
+
Class to sample encodings given low dimensional spatial relationships.
|
| 11 |
+
"""
|
| 12 |
+
def __init__(self, encodes):
|
| 13 |
+
self.encodes = encodes
|
| 14 |
+
|
| 15 |
+
def apply_coefs(self, coefs):
|
| 16 |
+
"""
|
| 17 |
+
Linear combination of encodings given coefs
|
| 18 |
+
"""
|
| 19 |
+
device = recursive_find_device(self.encodes)
|
| 20 |
+
dtype = recursive_find_dtype(self.encodes)
|
| 21 |
+
# NOTE: Convert from float64 first to `dtype` and *then* to `device` to
|
| 22 |
+
# prevent issues with certain devices not supporting f64
|
| 23 |
+
# (*cough cough* Apple)
|
| 24 |
+
coefs = torch.from_numpy(coefs).to(dtype).to(device)
|
| 25 |
+
|
| 26 |
+
def single_apply(encodes):
|
| 27 |
+
if encodes is None:
|
| 28 |
+
return None
|
| 29 |
+
elif len(encodes.shape) == 3:
|
| 30 |
+
return (coefs[:,None,None] * encodes).sum(0)
|
| 31 |
+
elif len(encodes.shape) == 2:
|
| 32 |
+
return (coefs[:,None] * encodes).sum(0)
|
| 33 |
+
else:
|
| 34 |
+
raise ValueError("Encoding Sampler couldn't figure out shape of encodings")
|
| 35 |
+
|
| 36 |
+
if isinstance(self.encodes, list) or isinstance(self.encodes, tuple):
|
| 37 |
+
return list(map(single_apply, self.encodes))
|
| 38 |
+
else:
|
| 39 |
+
return single_apply(self.encodes)
|
| 40 |
+
|
| 41 |
+
@abstractmethod
|
| 42 |
+
def __call__(self, point, other_points):
|
| 43 |
+
"""
|
| 44 |
+
:param point: Point in low space representing user input ([2,] array)
|
| 45 |
+
:param other_points: Points in low space representing existing prompts ([N,2] array)
|
| 46 |
+
"""
|
| 47 |
+
pass
|
| 48 |
+
|
| 49 |
+
class DistanceSampling(EncodingSampler):
|
| 50 |
+
"""
|
| 51 |
+
Sample based on distances between points in low dim space
|
| 52 |
+
"""
|
| 53 |
+
def __call__(self, point, other_points):
|
| 54 |
+
coefs = 1. / ((1. + np.linalg.norm(point[None,:] - other_points, axis = 1) ** 2))
|
| 55 |
+
return self.apply_coefs(coefs)
|
| 56 |
+
|
| 57 |
+
class CircleSampling(EncodingSampler):
|
| 58 |
+
"""
|
| 59 |
+
Sampler that views all encodings as points on a unit circle
|
| 60 |
+
"""
|
| 61 |
+
def __call__(self, point, other_points):
|
| 62 |
+
# Idea: weight of points in same direction should be 1
|
| 63 |
+
# weight of points in opposite should be 0
|
| 64 |
+
cos_sims = point @ other_points.transpose() # [2] x [2, N] -> N
|
| 65 |
+
|
| 66 |
+
# Negative values don't work, but we want something analagous for "negative signals"
|
| 67 |
+
# tanh is like -x for low values, but then caps out at 1
|
| 68 |
+
#cos_sims = np.where(cos_sims<0, np.tanh(cos_sims), cos_sims)
|
| 69 |
+
return self.apply_coefs(cos_sims)
|
latent_space_explorer/utils.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import math
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
def random_circle_init(min_r : float = 0.5, on_edge : bool = False):
|
| 6 |
+
theta = random.uniform(0, 2 * math.pi)
|
| 7 |
+
if on_edge:
|
| 8 |
+
r = 1.0
|
| 9 |
+
else:
|
| 10 |
+
r = random.uniform(min_r, 1.0)
|
| 11 |
+
x = r * math.cos(theta)
|
| 12 |
+
y = r * math.sin(theta)
|
| 13 |
+
|
| 14 |
+
return x, y
|
| 15 |
+
|
| 16 |
+
def recursive_find_dtype(x):
|
| 17 |
+
"""
|
| 18 |
+
Assuming x is some list/tuple of things that could be tensors, searches for any tensors and returns dtype
|
| 19 |
+
"""
|
| 20 |
+
for i in x:
|
| 21 |
+
if isinstance(i, list):
|
| 22 |
+
res = recursive_find_dtype(i)
|
| 23 |
+
if res is None:
|
| 24 |
+
continue
|
| 25 |
+
else:
|
| 26 |
+
return res
|
| 27 |
+
elif isinstance(i, torch.Tensor):
|
| 28 |
+
return i.dtype
|
| 29 |
+
|
| 30 |
+
def recursive_find_device(x):
|
| 31 |
+
"""
|
| 32 |
+
Assuming x is some list/tuple of things that could be tensors, searches for any tensors and returns device
|
| 33 |
+
"""
|
| 34 |
+
for i in x:
|
| 35 |
+
if isinstance(i, list):
|
| 36 |
+
res = recursive_find_device(i)
|
| 37 |
+
if res is None:
|
| 38 |
+
continue
|
| 39 |
+
return res
|
| 40 |
+
elif isinstance(i, torch.Tensor):
|
| 41 |
+
return i.device
|
main.py
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from latent_space_explorer import GameConfig, LatentSpaceExplorer
|
| 2 |
+
|
| 3 |
+
if __name__ == "__main__":
|
| 4 |
+
config = GameConfig(
|
| 5 |
+
call_every = 100
|
| 6 |
+
)
|
| 7 |
+
|
| 8 |
+
explorer = LatentSpaceExplorer(config)
|
| 9 |
+
|
| 10 |
+
explorer.set_prompts(
|
| 11 |
+
[
|
| 12 |
+
"A photo of a cat",
|
| 13 |
+
"A space-aged ferrari",
|
| 14 |
+
"artwork of the titanic hitting an iceberg",
|
| 15 |
+
"a photo of a dog"
|
| 16 |
+
]
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
while True:
|
| 20 |
+
explorer.update()
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
diffusers
|
| 2 |
+
pygame
|
| 3 |
+
torch
|
| 4 |
+
torchvision
|