Spaces:
Sleeping
Sleeping
Create upscaler.py
Browse files- upscaler.py +128 -0
upscaler.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from PIL import Image
|
| 2 |
+
from diffusers import StableDiffusionUpscalePipeline
|
| 3 |
+
import torch
|
| 4 |
+
from split_image import split
|
| 5 |
+
import os
|
| 6 |
+
import random
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def split_image(im, rows, cols, should_square, should_quiet=False):
|
| 10 |
+
im_width, im_height = im.size
|
| 11 |
+
row_width = int(im_width / cols)
|
| 12 |
+
row_height = int(im_height / rows)
|
| 13 |
+
name = "image"
|
| 14 |
+
ext = ".png"
|
| 15 |
+
name = os.path.basename(name)
|
| 16 |
+
images = []
|
| 17 |
+
if should_square:
|
| 18 |
+
min_dimension = min(im_width, im_height)
|
| 19 |
+
max_dimension = max(im_width, im_height)
|
| 20 |
+
if not should_quiet:
|
| 21 |
+
print("Resizing image to a square...")
|
| 22 |
+
print("Determining background color...")
|
| 23 |
+
bg_color = split.determine_bg_color(im)
|
| 24 |
+
if not should_quiet:
|
| 25 |
+
print("Background color is... " + str(bg_color))
|
| 26 |
+
im_r = Image.new("RGBA" if ext == "png" else "RGB",
|
| 27 |
+
(max_dimension, max_dimension), bg_color)
|
| 28 |
+
offset = int((max_dimension - min_dimension) / 2)
|
| 29 |
+
if im_width > im_height:
|
| 30 |
+
im_r.paste(im, (0, offset))
|
| 31 |
+
else:
|
| 32 |
+
im_r.paste(im, (offset, 0))
|
| 33 |
+
im = im_r
|
| 34 |
+
row_width = int(max_dimension / cols)
|
| 35 |
+
row_height = int(max_dimension / rows)
|
| 36 |
+
n = 0
|
| 37 |
+
for i in range(0, rows):
|
| 38 |
+
for j in range(0, cols):
|
| 39 |
+
box = (j * row_width, i * row_height, j * row_width +
|
| 40 |
+
row_width, i * row_height + row_height)
|
| 41 |
+
outp = im.crop(box)
|
| 42 |
+
outp_path = name + "_" + str(n) + ext
|
| 43 |
+
if not should_quiet:
|
| 44 |
+
print("Exporting image tile: " + outp_path)
|
| 45 |
+
images.append(outp)
|
| 46 |
+
n += 1
|
| 47 |
+
return [img for img in images]
|
| 48 |
+
|
| 49 |
+
def upscale_image(img, rows, cols,seed,prompt,negative_prompt,xformers,cpu_offload,attention_slicing,enable_custom_sliders=False,guidance=7,iterations=50):
|
| 50 |
+
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
| 51 |
+
try:
|
| 52 |
+
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
| 53 |
+
except:
|
| 54 |
+
pipeline = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16, local_files_only=True)
|
| 55 |
+
pipeline = pipeline.to("cuda")
|
| 56 |
+
if xformers:
|
| 57 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
| 58 |
+
else:
|
| 59 |
+
pipeline.disable_xformers_memory_efficient_attention()
|
| 60 |
+
if cpu_offload:
|
| 61 |
+
try:
|
| 62 |
+
pipeline.enable_sequential_cpu_offload()
|
| 63 |
+
except:
|
| 64 |
+
pass
|
| 65 |
+
if attention_slicing:
|
| 66 |
+
pipeline.enable_attention_slicing()
|
| 67 |
+
else:
|
| 68 |
+
pipeline.disable_attention_slicing()
|
| 69 |
+
img = Image.fromarray(img)
|
| 70 |
+
# load model and scheduler
|
| 71 |
+
if seed==-1:
|
| 72 |
+
generator = torch.manual_seed(random.randint(0, 9999999))
|
| 73 |
+
else:
|
| 74 |
+
generator = torch.manual_seed(seed)
|
| 75 |
+
|
| 76 |
+
original_width, original_height = img.size
|
| 77 |
+
max_dimension = max(original_width, original_height)
|
| 78 |
+
tiles = split_image(img, rows, cols, True, False)
|
| 79 |
+
ups_tiles = []
|
| 80 |
+
i = 0
|
| 81 |
+
for x in tiles:
|
| 82 |
+
i=i+1
|
| 83 |
+
if enable_custom_sliders:
|
| 84 |
+
ups_tile = pipeline(prompt=prompt,negative_prompt=negative_prompt,guidance_scale=guidance, num_inference_steps=iterations, image=x.convert("RGB"),generator=generator).images[0]
|
| 85 |
+
else:
|
| 86 |
+
ups_tile = pipeline(prompt=prompt,negative_prompt=negative_prompt, image=x.convert("RGB"),generator=generator).images[0]
|
| 87 |
+
ups_tiles.append(ups_tile)
|
| 88 |
+
|
| 89 |
+
# Determine the size of the merged upscaled image
|
| 90 |
+
total_width = 0
|
| 91 |
+
total_height = 0
|
| 92 |
+
side = 0
|
| 93 |
+
for ups_tile in ups_tiles:
|
| 94 |
+
side = ups_tile.width
|
| 95 |
+
break
|
| 96 |
+
for x in tiles:
|
| 97 |
+
tsize = x.width
|
| 98 |
+
break
|
| 99 |
+
|
| 100 |
+
ups_times = abs(side/tsize)
|
| 101 |
+
new_size = (max_dimension * ups_times, max_dimension * ups_times)
|
| 102 |
+
total_width = cols*side
|
| 103 |
+
total_height = rows*side
|
| 104 |
+
|
| 105 |
+
# Create a blank image with the calculated size
|
| 106 |
+
merged_image = Image.new("RGB", (total_width, total_height))
|
| 107 |
+
|
| 108 |
+
# Paste each upscaled tile into the blank image
|
| 109 |
+
current_width = 0
|
| 110 |
+
current_height = 0
|
| 111 |
+
maximum_width = cols*side
|
| 112 |
+
for ups_tile in ups_tiles:
|
| 113 |
+
merged_image.paste(ups_tile, (current_width, current_height))
|
| 114 |
+
current_width += ups_tile.width
|
| 115 |
+
if current_width>=maximum_width:
|
| 116 |
+
current_width = 0
|
| 117 |
+
current_height = current_height+side
|
| 118 |
+
|
| 119 |
+
# Using the center of the image as pivot, crop the image to the original dimension times four
|
| 120 |
+
crop_left = (new_size[0] - original_width * ups_times) // 2
|
| 121 |
+
crop_upper = (new_size[1] - original_height * ups_times) // 2
|
| 122 |
+
crop_right = crop_left + original_width * ups_times
|
| 123 |
+
crop_lower = crop_upper + original_height * ups_times
|
| 124 |
+
final_img = merged_image.crop((crop_left, crop_upper, crop_right, crop_lower))
|
| 125 |
+
|
| 126 |
+
# The resulting image should be identical to the original image in proportions / aspect ratio, with no loss of elements.
|
| 127 |
+
# Save the merged image
|
| 128 |
+
return final_img
|