"""Preprocessing methods""" import logging from typing import List, Tuple import numpy as np from PIL import Image, ImageFilter from config import COLOR_RGB # from enhance_config import ENHANCE_SETTINGS LOGGING = logging.getLogger(__name__) def preprocess_seg_mask(canvas_seg, real_seg: Image.Image = None) -> Tuple[np.ndarray, np.ndarray]: """Preprocess the segmentation mask. Args: canvas_seg: segmentation canvas real_seg (Image.Image, optional): segmentation mask. Defaults to None. Returns: Tuple[np.ndarray, np.ndarray]: segmentation mask, segmentation mask with overlay """ # get unique colors in the segmentation image_seg = canvas_seg.image_data.copy()[:, :, :3] # average the colors of the segmentation masks average_color = np.mean(image_seg, axis=(2)) mask = average_color[:, :] > 0 if mask.sum() > 0: mask = mask * 1 unique_colors = np.unique(image_seg.reshape(-1, image_seg.shape[-1]), axis=0) unique_colors = [tuple(color) for color in unique_colors] unique_colors = [color for color in unique_colors if np.sum( np.all(image_seg == color, axis=-1)) > 100] unique_colors_exact = [color for color in unique_colors if color in COLOR_RGB] if real_seg is not None: overlay_seg = np.array(real_seg) unique_colors = np.unique(overlay_seg.reshape(-1, overlay_seg.shape[-1]), axis=0) unique_colors = [tuple(color) for color in unique_colors] for color in unique_colors_exact: if color != (255, 255, 255) and color != (0, 0, 0): overlay_seg[np.all(image_seg == color, axis=-1)] = color image_seg = overlay_seg return mask, image_seg