File size: 2,695 Bytes
372f297
13cb3ce
 
 
eff32bf
1cd414e
31e41b7
26987c4
13cb3ce
31e41b7
405f281
 
8a5a456
26987c4
 
405f281
f59e95f
28471f6
1cd414e
 
26987c4
1cd414e
 
f59e95f
bc435a1
 
 
8a5a456
28471f6
1cd414e
 
 
 
 
 
 
920ece4
 
 
 
e9f68f0
13cb3ce
31e41b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import gradio as gr
import io
from PIL import Image
import numpy as np

# from config import setResoluton
from models import make_inpainting
from preprocessing import get_mask

def rf(input_img1,
            input_img2,
            positive_prompt,
            negative_prompt,
            num_of_images,
            resolution
            ):

    print("predict")
    HEIGHT = resolution
    WIDTH = resolution

    input_img1 = input_img1.resize((resolution, resolution))
    input_img2 = input_img2.resize((resolution, resolution))

    canvas_mask = np.array(input_img2)
    mask = get_mask(canvas_mask)

    print(input_img1, mask, positive_prompt, negative_prompt)

    retList=  make_inpainting(positive_prompt=positive_prompt,
                               image=input_img1,
                               mask_image=mask,
                               negative_prompt=negative_prompt,
                               num_of_images=num_of_images,
                               resolution=resolution
                               )
    # add the rest up to 10
    while (len(retList)<10):
        retList.append(None)

    return retList

def segmentation(image):
    return image

def upscale(image):
    return image

with gr.Blocks() as app:    
    
    gr.Button("FurnituRemove").click(rf, 
                                     inputs=[gr.Image(label="img", type="pil"),
                                            gr.Image(label="mask", type="pil"),
                                            gr.Textbox(label="positive_prompt",value="empty room"),
                                            gr.Textbox(label="negative_prompt",value=""),
                                            gr.Number(label="num_of_images",value=2),
                                            gr.Number(label="resolution",value=512)
                                            ], 
                                    outputs=[
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image(),
                                            gr.Image()])

    gr.Button("Segmentation").click(segmentation, inputs=gr.Image(type="pil"), outputs=gr.Image())

    gr.Button("Upscale").click(upscale, inputs=gr.Image(type="pil"), outputs=gr.Image())

app.launch(debug=True)