Spaces:
Sleeping
Sleeping
File size: 1,705 Bytes
13cb3ce 302f20e 13cb3ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import logging
from typing import List, Tuple, Dict
import torch
import gc
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from palette import ade_palette
LOGGING = logging.getLogger(__name__)
def flush():
gc.collect()
torch.cuda.empty_cache()
def get_segmentation_pipeline() -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
"""Method to load the segmentation pipeline
Returns:
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
"""
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
"openmmlab/upernet-convnext-small")
return image_processor, image_segmentor
@torch.inference_mode()
@torch.autocast('cuda')
def segment_image(image: Image) -> Image:
"""Method to segment image
Args:
image (Image): input image
Returns:
Image: segmented image
"""
image_processor, image_segmentor = get_segmentation_pipeline()
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg).convert('RGB')
return seg_image |