Spaces:
Sleeping
Sleeping
File size: 3,613 Bytes
372f297 13cb3ce 302f20e eff32bf 04c7187 302f20e 405f281 8a5a456 26987c4 405f281 f59e95f 302f20e 1cd414e 26987c4 1cd414e f59e95f bc435a1 302f20e bc435a1 8a5a456 28471f6 1cd414e 920ece4 e9f68f0 13cb3ce 04c7187 302f20e 8f75876 302f20e 8f75876 04c7187 8f75876 302f20e 8f75876 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import gradio as gr
import numpy as np
from models import make_inpainting
import utils
from transformers import MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
from PIL import Image
import requests
from transformers import pipeline
import torch
import random
import io
import base64
def removeFurniture(input_img1,
input_img2,
positive_prompt,
negative_prompt,
num_of_images,
resolution
):
print("removeFurniture")
HEIGHT = resolution
WIDTH = resolution
input_img1 = input_img1.resize((resolution, resolution))
input_img2 = input_img2.resize((resolution, resolution))
canvas_mask = np.array(input_img2)
mask = utils.get_mask(canvas_mask)
print(input_img1, mask, positive_prompt, negative_prompt)
retList= make_inpainting(positive_prompt=positive_prompt,
image=input_img1,
mask_image=mask,
negative_prompt=negative_prompt,
num_of_images=num_of_images,
resolution=resolution
)
# add the rest up to 10
while (len(retList)<10):
retList.append(None)
return retList
def imageToString(img):
output = io.BytesIO()
img.save(output, format="png")
return output.getvalue()
def segmentation(img):
print("segmentation")
# semantic_segmentation = pipeline("image-segmentation", "nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
semantic_segmentation = pipeline("image-segmentation", "facebook/maskformer-swin-large-ade")
results = semantic_segmentation(img)
for p in results:
p['mask'] = utils.image_to_byte_array(p['mask'])
p['mask'] = base64.b64encode(p['mask'])
#print(results)
return str(results)
def upscale(image):
return image
with gr.Blocks() as app:
with gr.Row():
with gr.Column():
gr.Button("FurnituRemove").click(removeFurniture,
inputs=[gr.Image(label="img", type="pil"),
gr.Image(label="mask", type="pil"),
gr.Textbox(label="positive_prompt",value="empty room"),
gr.Textbox(label="negative_prompt",value=""),
gr.Number(label="num_of_images",value=2),
gr.Number(label="resolution",value=512)
],
outputs=[
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image(),
gr.Image()])
with gr.Column():
gr.Button("Segmentation").click(segmentation, inputs=gr.Image(type="pil"), outputs=gr.TextArea())
with gr.Column():
gr.Button("Upscale").click(upscale, inputs=gr.Image(type="pil"), outputs=gr.Image())
app.launch(debug=True,share=True) |