michaelapplydesign's picture
ret 10 images
e9f68f0
raw
history blame
2.26 kB
import gradio as gr
import io
from PIL import Image
import numpy as np
from config import WIDTH, HEIGHT
from models import make_image_controlnet, make_inpainting
from preprocessing import preprocess_seg_mask, get_image, get_mask
def image_to_byte_array(image: Image) -> bytes:
# BytesIO is a fake file stored in memory
imgByteArr = io.BytesIO()
# image.save expects a file as a argument, passing a bytes io ins
image.save(imgByteArr, format='png') # image.format
# Turn the BytesIO object back into a bytes object
imgByteArr = imgByteArr.getvalue()
return imgByteArr
def predict(input_img1,
input_img2,
positive_prompt,
negative_prompt
):
print("predict")
# input_img1 = Image.fromarray(input_img1)
# input_img2 = Image.fromarray(input_img2)
input_img1 = input_img1.resize((WIDTH, HEIGHT))
input_img2 = input_img2.resize((WIDTH, WIDTH))
canvas_mask = np.array(input_img2)
mask = get_mask(canvas_mask)
print(input_img1, mask,positive_prompt,negative_prompt)
retList=[]
for x in range(10):
result_image = make_inpainting(positive_prompt="empty room",
image=input_img1,
mask_image=mask,
negative_prompt="",
)
retList.append(result_image)
return retList
app = gr.Interface(
predict,
inputs=[gr.Image(label="img", sources=['upload'], type="pil"),
gr.Image(label="mask", sources=['upload'], type="pil")
],
outputs= [
gr.Image(label="resp0"),
gr.Image(label="resp1"),
gr.Image(label="resp2"),
gr.Image(label="resp3"),
gr.Image(label="resp4"),
gr.Image(label="resp5"),
gr.Image(label="resp6"),
gr.Image(label="resp7"),
gr.Image(label="resp8"),
gr.Image(label="resp9")],
title="rem fur 1",
)
app.launch(share=True)
#
# gr.Textbox(label="positive_prompt"),
# gr.Textbox(label="negative_prompt")
# gr.Interface(
# test1,
# inputs=[gr.Textbox(label="param1")],
# outputs= gr.Textbox(label="result"),
# title="rem fur 1",
# ).launch(share=True)