Spaces:
Running
Running
# import gradio as gr | |
# | |
# def greet(name): | |
# return "V5 Hello " + name + "!!" | |
# | |
# iface = gr.Interface( | |
# fn=greet, | |
# inputs="text", | |
# outputs="text", | |
# title="MB TEST 1", | |
# ) | |
# iface.launch(share=True) | |
import gradio as gr | |
from models import make_inpainting | |
import io | |
from PIL import Image | |
import numpy as np | |
# from transformers import pipeline | |
# | |
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog") | |
def image_to_byte_array(image: Image) -> bytes: | |
# BytesIO is a fake file stored in memory | |
imgByteArr = io.BytesIO() | |
# image.save expects a file as a argument, passing a bytes io ins | |
image.save(imgByteArr, format='png') # image.format | |
# Turn the BytesIO object back into a bytes object | |
imgByteArr = imgByteArr.getvalue() | |
return imgByteArr | |
def predict(input_img1,input_img2): | |
# image = Image.open(requests.get("https://applydesignblobs-chh5aahjdzh0cnew.z01.azurefd.net/spaceimages/org_sqr_7fee0869-3187-4363-b5fb-5233e943649d.png", stream=True).raw) | |
# mask = Image.open(requests.get("https://applydesign.blob.core.windows.net/spaceimages/mask_e85b1585-8.png", stream=True).raw) | |
result_image = make_inpainting(positive_prompt='test1', | |
image=image_to_byte_array(input_img1), | |
mask_image=np.array(input_img2), | |
negative_prompt="xxx", | |
) | |
# predictions = pipeline(input_img1) | |
return input_img1 | |
gradio_app = gr.Interface( | |
predict, | |
inputs=[gr.Image(label="img", sources=['upload', 'webcam'], type="pil"), | |
gr.Image(label="mask", sources=['upload', 'webcam'], type="pil") | |
], | |
outputs= gr.Image(label="resp"), | |
title="rem fur 1", | |
) | |
gradio_app.launch(share=True) | |