Spaces:
Runtime error
Runtime error
Aadhithya
commited on
Commit
·
6390e4a
1
Parent(s):
b628cb1
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,215 @@
|
|
1 |
-
|
|
|
2 |
import os
|
3 |
-
|
4 |
-
import
|
5 |
-
from
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio
|
2 |
+
from huggingface_hub import Repository
|
3 |
import os
|
4 |
+
|
5 |
+
from utils.utils import norm_crop, estimate_norm, inverse_estimate_norm, transform_landmark_points, get_lm
|
6 |
+
from networks.layers import AdaIN, AdaptiveAttention
|
7 |
+
from tensorflow_addons.layers import InstanceNormalization
|
8 |
+
import numpy as np
|
9 |
+
import cv2
|
10 |
+
from scipy.ndimage import gaussian_filter
|
11 |
+
|
12 |
+
from tensorflow.keras.models import load_model
|
13 |
+
from options.swap_options import SwapOptions
|
14 |
+
|
15 |
+
# .
|
16 |
+
# token = os.environ['model_fetch']
|
17 |
+
|
18 |
+
opt = SwapOptions().parse()
|
19 |
+
token = os.environ['token']
|
20 |
+
|
21 |
+
retina_repo = Repository(local_dir="retina_models", clone_from="felixrosberg/RetinaFace")
|
22 |
+
|
23 |
+
from retinaface.models import *
|
24 |
+
|
25 |
+
RetinaFace = load_model("retina_models/RetinaFace-Res50.h5",
|
26 |
+
custom_objects={"FPN": FPN,
|
27 |
+
"SSH": SSH,
|
28 |
+
"BboxHead": BboxHead,
|
29 |
+
"LandmarkHead": LandmarkHead,
|
30 |
+
"ClassHead": ClassHead}
|
31 |
+
)
|
32 |
+
|
33 |
+
arc_repo = Repository(local_dir="arcface_model", clone_from="felixrosberg/ArcFace")
|
34 |
+
ArcFace = load_model("arcface_model/ArcFace-Res50.h5")
|
35 |
+
ArcFaceE = load_model("arcface_model/ArcFacePerceptual-Res50.h5")
|
36 |
+
|
37 |
+
g_repo = Repository(local_dir="g_model_c_hq", clone_from="felixrosberg/FaceDancer",use_auth_token=token)
|
38 |
+
G = load_model("g_model_c_hq/FaceDancer_config_c_HQ.h5", custom_objects={"AdaIN": AdaIN,
|
39 |
+
"AdaptiveAttention": AdaptiveAttention,
|
40 |
+
"InstanceNormalization": InstanceNormalization})
|
41 |
+
|
42 |
+
# r_repo = Repository(local_dir="reconstruction_attack", clone_from="felixrosberg/reconstruction_attack",
|
43 |
+
# private=True, use_auth_token=token)
|
44 |
+
# R = load_model("reconstruction_attack/reconstructor_42.h5", custom_objects={"AdaIN": AdaIN,
|
45 |
+
# "AdaptiveAttention": AdaptiveAttention,
|
46 |
+
# "InstanceNormalization": InstanceNormalization})
|
47 |
+
|
48 |
+
# permuter_repo = Repository(local_dir="identity_permuter", clone_from="felixrosberg/identitypermuter",
|
49 |
+
# private=True, use_auth_token=token, git_user="felixrosberg")
|
50 |
+
|
51 |
+
# from identity_permuter.id_permuter import identity_permuter
|
52 |
+
|
53 |
+
# IDP = identity_permuter(emb_size=32, min_arg=False)
|
54 |
+
# IDP.load_weights("identity_permuter/id_permuter.h5")
|
55 |
+
|
56 |
+
blend_mask_base = np.zeros(shape=(256, 256, 1))
|
57 |
+
blend_mask_base[80:244, 32:224] = 1
|
58 |
+
blend_mask_base = gaussian_filter(blend_mask_base, sigma=7)
|
59 |
+
|
60 |
+
|
61 |
+
def run_inference(target, source, slider, adv_slider, settings):
|
62 |
+
try:
|
63 |
+
source = np.array(source)
|
64 |
+
target = np.array(target)
|
65 |
+
|
66 |
+
# Prepare to load video
|
67 |
+
if "anonymize" not in settings:
|
68 |
+
source_a = RetinaFace(np.expand_dims(source, axis=0)).numpy()[0]
|
69 |
+
source_h, source_w, _ = source.shape
|
70 |
+
source_lm = get_lm(source_a, source_w, source_h)
|
71 |
+
source_aligned = norm_crop(source, source_lm, image_size=256)
|
72 |
+
source_z = ArcFace.predict(np.expand_dims(tf.image.resize(source_aligned, [112, 112]) / 255.0, axis=0))
|
73 |
+
else:
|
74 |
+
source_z = None
|
75 |
+
|
76 |
+
# read frame
|
77 |
+
im = target
|
78 |
+
im_h, im_w, _ = im.shape
|
79 |
+
im_shape = (im_w, im_h)
|
80 |
+
|
81 |
+
detection_scale = im_w // 640 if im_w > 640 else 1
|
82 |
+
|
83 |
+
faces = RetinaFace(np.expand_dims(cv2.resize(im,
|
84 |
+
(im_w // detection_scale,
|
85 |
+
im_h // detection_scale)), axis=0)).numpy()
|
86 |
+
|
87 |
+
total_img = im / 255.0
|
88 |
+
for annotation in faces:
|
89 |
+
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
|
90 |
+
[annotation[6] * im_w, annotation[7] * im_h],
|
91 |
+
[annotation[8] * im_w, annotation[9] * im_h],
|
92 |
+
[annotation[10] * im_w, annotation[11] * im_h],
|
93 |
+
[annotation[12] * im_w, annotation[13] * im_h]],
|
94 |
+
dtype=np.float32)
|
95 |
+
|
96 |
+
# align the detected face
|
97 |
+
M, pose_index = estimate_norm(lm_align, 256, "arcface", shrink_factor=1.0)
|
98 |
+
im_aligned = (cv2.warpAffine(im, M, (256, 256), borderValue=0.0) - 127.5) / 127.5
|
99 |
+
|
100 |
+
if "adversarial defense" in settings:
|
101 |
+
eps = adv_slider / 200
|
102 |
+
X = tf.convert_to_tensor(np.expand_dims(im_aligned, axis=0))
|
103 |
+
with tf.GradientTape() as tape:
|
104 |
+
tape.watch(X)
|
105 |
+
|
106 |
+
X_z = ArcFaceE(tf.image.resize(X * 0.5 + 0.5, [112, 112]))
|
107 |
+
output = R([X, X_z])
|
108 |
+
|
109 |
+
loss = tf.reduce_mean(tf.abs(0 - output))
|
110 |
+
|
111 |
+
gradient = tf.sign(tape.gradient(loss, X))
|
112 |
+
|
113 |
+
adv_x = X + eps * gradient
|
114 |
+
im_aligned = tf.clip_by_value(adv_x, -1, 1)[0]
|
115 |
+
|
116 |
+
if "anonymize" in settings and "reconstruction attack" not in settings:
|
117 |
+
"""source_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) / 255.0, axis=0))
|
118 |
+
anon_ratio = int(512 * (slider / 100))
|
119 |
+
anon_vector = np.ones(shape=(1, 512))
|
120 |
+
anon_vector[:, :anon_ratio] = -1
|
121 |
+
np.random.shuffle(anon_vector)
|
122 |
+
source_z *= anon_vector"""
|
123 |
+
|
124 |
+
slider_weight = slider / 100
|
125 |
+
|
126 |
+
target_z = ArcFace.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
|
127 |
+
# source_z = IDP.predict(target_z)
|
128 |
+
|
129 |
+
source_z = slider_weight * source_z + (1 - slider_weight) * target_z
|
130 |
+
|
131 |
+
if "reconstruction attack" in settings:
|
132 |
+
source_z = ArcFaceE.predict(np.expand_dims(tf.image.resize(im_aligned, [112, 112]) * 0.5 + 0.5, axis=0))
|
133 |
+
|
134 |
+
# face swap
|
135 |
+
if "reconstruction attack" not in settings:
|
136 |
+
changed_face_cage = G.predict([np.expand_dims(im_aligned, axis=0),
|
137 |
+
source_z])
|
138 |
+
changed_face = changed_face_cage[0] * 0.5 + 0.5
|
139 |
+
|
140 |
+
# get inverse transformation landmarks
|
141 |
+
transformed_lmk = transform_landmark_points(M, lm_align)
|
142 |
+
|
143 |
+
# warp image back
|
144 |
+
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
|
145 |
+
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
|
146 |
+
|
147 |
+
# blend swapped face with target image
|
148 |
+
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
|
149 |
+
blend_mask = np.expand_dims(blend_mask, axis=-1)
|
150 |
+
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
|
151 |
+
else:
|
152 |
+
changed_face_cage = R.predict([np.expand_dims(im_aligned, axis=0),
|
153 |
+
source_z])
|
154 |
+
changed_face = changed_face_cage[0] * 0.5 + 0.5
|
155 |
+
|
156 |
+
# get inverse transformation landmarks
|
157 |
+
transformed_lmk = transform_landmark_points(M, lm_align)
|
158 |
+
|
159 |
+
# warp image back
|
160 |
+
iM, _ = inverse_estimate_norm(lm_align, transformed_lmk, 256, "arcface", shrink_factor=1.0)
|
161 |
+
iim_aligned = cv2.warpAffine(changed_face, iM, im_shape, borderValue=0.0)
|
162 |
+
|
163 |
+
# blend swapped face with target image
|
164 |
+
blend_mask = cv2.warpAffine(blend_mask_base, iM, im_shape, borderValue=0.0)
|
165 |
+
blend_mask = np.expand_dims(blend_mask, axis=-1)
|
166 |
+
total_img = (iim_aligned * blend_mask + total_img * (1 - blend_mask))
|
167 |
+
|
168 |
+
if "compare" in settings:
|
169 |
+
total_img = np.concatenate((im / 255.0, total_img), axis=1)
|
170 |
+
|
171 |
+
total_img = np.clip(total_img, 0, 1)
|
172 |
+
total_img *= 255.0
|
173 |
+
total_img = total_img.astype('uint8')
|
174 |
+
|
175 |
+
return total_img
|
176 |
+
except Exception as e:
|
177 |
+
print(e)
|
178 |
+
return None
|
179 |
+
|
180 |
+
|
181 |
+
description = "Performs subject agnostic identity transfer from a source face to all target faces. \n\n" \
|
182 |
+
"Implementation and demo of FaceDancer, accepted to WACV 2023. \n\n" \
|
183 |
+
"Pre-print: https://arxiv.org/abs/2210.10473 \n\n" \
|
184 |
+
"Code: https://github.com/felixrosberg/FaceDancer \n\n" \
|
185 |
+
"\n\n" \
|
186 |
+
"Options:\n\n" \
|
187 |
+
"-Compare returns the target image concatenated with the results.\n\n" \
|
188 |
+
"-Anonymize will ignore the source image and perform an identity permutation of target faces.\n\n" \
|
189 |
+
"-Reconstruction attack will attempt to invert the face swap or the anonymization.\n\n" \
|
190 |
+
"-Adversarial defense will add a permutation noise that disrupts the reconstruction attack.\n\n" \
|
191 |
+
"NOTE: There is no guarantees with the anonymization process currently.\n\n" \
|
192 |
+
"NOTE: source image with too high resolution may not work properly!"
|
193 |
+
examples = [["assets/rick.jpg", "assets/musk.jpg", 100, 10, ["compare"]],
|
194 |
+
["assets/musk.jpg", "assets/musk.jpg", 100, 10, ["anonymize"]]]
|
195 |
+
article = """
|
196 |
+
Demo is based of recent research from my Ph.D work. Results expects to be published in the coming months.
|
197 |
+
"""
|
198 |
+
|
199 |
+
iface = gradio.Interface(run_inference,
|
200 |
+
[gradio.Image(shape=None, type="pil", label='Target'),
|
201 |
+
gradio.Image(shape=None, type="pil", label='Source'),
|
202 |
+
gradio.Slider(0, 100, default=100, label="Anonymization ratio (%)"),
|
203 |
+
gradio.Slider(0, 100, default=100, label="Adversarial defense ratio (%)"),
|
204 |
+
gradio.CheckboxGroup(["compare",
|
205 |
+
"anonymize",
|
206 |
+
"reconstruction attack",
|
207 |
+
"adversarial defense"],
|
208 |
+
label='Options')],
|
209 |
+
"image",
|
210 |
+
title="Face Swap",
|
211 |
+
description=description,
|
212 |
+
examples=examples,
|
213 |
+
article=article,
|
214 |
+
layout="vertical")
|
215 |
+
iface.launch()
|