import joblib import pandas as pd import streamlit as st model = joblib.load('model.joblib') unique_values = joblib.load('unique_values.joblib') unique_area_type = unique_values["Area Type"] unique_city = unique_values["City"] unique_furnishing = unique_values["Furnishing Status"] unique_tenant = unique_values["Tenant Preferred"] unique_contact = unique_values["Point of Contact"] def main(): st.title("House Rent Prediction") with st.form("questionaire"): BHK = st.slider("BHK",min_value=1,max_value=6) Size = st.slider("Size",min_value=10,max_value=8000) Bathroom = st.slider("Bathroom",min_value=1,max_value=10) AreaType = st.selectbox("Area Type",options=unique_area_type) city = st.selectbox("City",options=unique_city) FurnishingStatus = st.selectbox("Furnishing Status",options=unique_furnishing) TenantPreferred = st.selectbox("Tenant Preferred",options=unique_tenant) PointofContact = st.selectbox("Point of Contact",options=unique_contact) # clicked==True only when the button is clicked clicked = st.form_submit_button("Predict Rent") if clicked: result=model.predict(pd.DataFrame({"BHK": [BHK], "Size": [Size], "Bathroom": [Bathroom], "Area Type": [AreaType], "City": [city], "Furnishing Status": [FurnishingStatus], "Tenant Preferred": [TenantPreferred], "Point of Contact": [PointofContact]})) # Show prediction st.success(f'Your predicted Rent is {result}') if __name__ == "__main__": main()