Update main.py
Browse files
main.py
CHANGED
@@ -19,35 +19,45 @@ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
|
|
19 |
# Load the trained model weights
|
20 |
num_classes = 7
|
21 |
model.classifier = nn.Linear(model.config.hidden_size, num_classes)
|
22 |
-
|
23 |
-
model.load_state_dict(torch.load("skin_cancer_model.pth", map_location=torch.device('cpu')))
|
24 |
model.eval()
|
25 |
|
|
|
|
|
|
|
|
|
26 |
# Define class labels
|
27 |
class_labels = ['benign_keratosis-like_lesions', 'basal_cell_carcinoma', 'actinic_keratoses', 'vascular_lesions', 'melanocytic_Nevi', 'melanoma', 'dermatofibroma']
|
28 |
|
|
|
|
|
|
|
29 |
# Define image transformations
|
30 |
transform = transforms.Compose([
|
31 |
transforms.Resize((224, 224)),
|
32 |
transforms.ToTensor(),
|
33 |
])
|
34 |
|
35 |
-
# Define API endpoint for model inference
|
36 |
@app.post('/predict')
|
37 |
async def predict(file: UploadFile = File(...)):
|
38 |
contents = await file.read()
|
39 |
image = Image.open(io.BytesIO(contents))
|
40 |
-
image = transform(image).unsqueeze(0) # Add batch dimension
|
41 |
|
42 |
with torch.no_grad():
|
43 |
outputs = model(image)
|
44 |
|
45 |
# Calculate softmax probabilities
|
46 |
-
probabilities = torch.softmax(outputs.logits, dim=1)
|
47 |
|
48 |
# Get predicted class index and its probability
|
49 |
-
predicted_idx = torch.argmax(probabilities).item()
|
50 |
predicted_label = class_labels[predicted_idx]
|
51 |
-
|
52 |
|
53 |
-
|
|
|
|
|
|
|
|
|
|
19 |
# Load the trained model weights
|
20 |
num_classes = 7
|
21 |
model.classifier = nn.Linear(model.config.hidden_size, num_classes)
|
22 |
+
model.load_state_dict(torch.load("/kaggle/input/skincancer-vit/skin_cancer_model.pth", map_location=torch.device('cpu')))
|
|
|
23 |
model.eval()
|
24 |
|
25 |
+
# Define device
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
model.to(device)
|
28 |
+
|
29 |
# Define class labels
|
30 |
class_labels = ['benign_keratosis-like_lesions', 'basal_cell_carcinoma', 'actinic_keratoses', 'vascular_lesions', 'melanocytic_Nevi', 'melanoma', 'dermatofibroma']
|
31 |
|
32 |
+
# Define optimal thresholds
|
33 |
+
thresholds = [0.88134295, 0.43095806, 0.39622146, 0.90647435, 0.8128958, 0.05310565, 0.15926854]
|
34 |
+
|
35 |
# Define image transformations
|
36 |
transform = transforms.Compose([
|
37 |
transforms.Resize((224, 224)),
|
38 |
transforms.ToTensor(),
|
39 |
])
|
40 |
|
41 |
+
# Define API endpoint for model inference with class-specific thresholds
|
42 |
@app.post('/predict')
|
43 |
async def predict(file: UploadFile = File(...)):
|
44 |
contents = await file.read()
|
45 |
image = Image.open(io.BytesIO(contents))
|
46 |
+
image = transform(image).unsqueeze(0).to(device) # Add batch dimension and move to device
|
47 |
|
48 |
with torch.no_grad():
|
49 |
outputs = model(image)
|
50 |
|
51 |
# Calculate softmax probabilities
|
52 |
+
probabilities = torch.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
53 |
|
54 |
# Get predicted class index and its probability
|
55 |
+
predicted_idx = torch.argmax(torch.tensor(probabilities)).item()
|
56 |
predicted_label = class_labels[predicted_idx]
|
57 |
+
predicted_probability = probabilities[predicted_idx]
|
58 |
|
59 |
+
# Check if the predicted probability meets the class-specific threshold
|
60 |
+
if predicted_probability < thresholds[predicted_idx]:
|
61 |
+
return {'predicted_class': 'uncertain', 'accuracy': predicted_probability}
|
62 |
+
else:
|
63 |
+
return {'predicted_class': predicted_label, 'accuracy': predicted_probability}
|