Spaces:
Running
Running
File size: 1,167 Bytes
ee64b99 1a45114 ee64b99 1a45114 ee64b99 58bcc6b afe3cda 804adda 1a45114 ee64b99 1a45114 ee64b99 1a45114 804adda 1a45114 ee64b99 1a45114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import streamlit as st
from sentence_transformers import CrossEncoder
# Model selection
st.title("Typosquatting Detection App")
st.write("Enter two domains to check if one is a typosquatted variant of the other.")
model_choice = st.selectbox("Choose a model for detection:", ["CE-typosquat-detect-Canine", "CE-typosquat-detect"])
model_path = f"./{model_choice}"
model = CrossEncoder(model_path)
# User inputs
domain = st.text_input("Enter the legitimate domain name:")
typosquat = st.text_input("Enter the potentially typosquatted domain name:")
st.write("Recommended threshold for detection is 0.3.")
threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.3)
# Typosquatting detection
if st.button("Check Typosquatting"):
inputs = [(typosquat, domain)]
prediction = model.predict(inputs)[0]
# Display results
if prediction > threshold:
st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.")
else:
st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.")
|