Anurag181011 commited on
Commit
ad0688d
·
verified ·
1 Parent(s): aebf6e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -9
app.py CHANGED
@@ -1,3 +1,4 @@
 
1
  import torch
2
  from diffusers import DiffusionPipeline
3
  import gradio as gr
@@ -8,14 +9,14 @@ def load_pipeline():
8
  lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
9
  trigger_word = "Super Realism" # Recommended trigger word
10
 
11
- # Retrieve your Hugging Face token from an environment variable
12
- hf_token = os.environ.get("HF_TOKEN")
13
 
14
- pipe = DiffusionPipeline.from_pretrained(
15
- "black-forest-labs/FLUX.1-dev",
16
- torch_dtype=torch.bfloat16,
17
- use_auth_token=hf_token # Use the token stored in your environment variable
18
- )
19
 
20
  # Load the LoRA weights into the pipeline
21
  pipe.load_lora_weights(lora_repo)
@@ -52,7 +53,11 @@ def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
52
  iface = gr.Interface(
53
  fn=generate_image,
54
  inputs=[
55
- gr.inputs.Textbox(lines=2, label="Prompt", placeholder="Enter your prompt, e.g., 'A tiny astronaut hatching from an egg on the moon, 4k, planet theme'"),
 
 
 
 
56
  gr.inputs.Slider(0, 10000, step=1, default=0, label="Seed (0 for random)"),
57
  gr.inputs.Slider(256, 1024, step=64, default=1024, label="Width"),
58
  gr.inputs.Slider(256, 1024, step=64, default=1024, label="Height"),
@@ -69,4 +74,4 @@ iface = gr.Interface(
69
  )
70
 
71
  if __name__ == "__main__":
72
- iface.launch(share=True)
 
1
+ import os
2
  import torch
3
  from diffusers import DiffusionPipeline
4
  import gradio as gr
 
9
  lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
10
  trigger_word = "Super Realism" # Recommended trigger word
11
 
12
+ # Retrieve your Hugging Face token from an environment variable
13
+ hf_token = os.environ.get("HF_TOKEN")
14
 
15
+ pipe = DiffusionPipeline.from_pretrained(
16
+ base_model,
17
+ torch_dtype=torch.bfloat16,
18
+ use_auth_token=hf_token # Use the token stored in your environment variable
19
+ )
20
 
21
  # Load the LoRA weights into the pipeline
22
  pipe.load_lora_weights(lora_repo)
 
53
  iface = gr.Interface(
54
  fn=generate_image,
55
  inputs=[
56
+ gr.inputs.Textbox(
57
+ lines=2,
58
+ label="Prompt",
59
+ placeholder="Enter your prompt, e.g., 'A tiny astronaut hatching from an egg on the moon, 4k, planet theme'"
60
+ ),
61
  gr.inputs.Slider(0, 10000, step=1, default=0, label="Seed (0 for random)"),
62
  gr.inputs.Slider(256, 1024, step=64, default=1024, label="Width"),
63
  gr.inputs.Slider(256, 1024, step=64, default=1024, label="Height"),
 
74
  )
75
 
76
  if __name__ == "__main__":
77
+ iface.launch(share=True)