Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import gradio as gr
|
5 |
-
from peft import PeftModel
|
6 |
|
7 |
# Load the base model and apply the LoRA weights for super realism
|
8 |
def load_pipeline():
|
@@ -10,13 +9,16 @@ def load_pipeline():
|
|
10 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
11 |
trigger_word = "Super Realism" # Recommended trigger word
|
12 |
|
|
|
|
|
13 |
pipe = DiffusionPipeline.from_pretrained(
|
14 |
base_model,
|
15 |
torch_dtype=torch.bfloat16,
|
|
|
16 |
)
|
17 |
|
18 |
-
# Load the LoRA weights into the pipeline
|
19 |
-
pipe
|
20 |
|
21 |
# Use GPU if available
|
22 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -28,9 +30,11 @@ pipe = load_pipeline()
|
|
28 |
|
29 |
# Define a function for image generation
|
30 |
def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
|
|
|
31 |
if randomize_seed:
|
32 |
seed = None
|
33 |
|
|
|
34 |
if "realistic" not in prompt.lower() and "realism" not in prompt.lower():
|
35 |
prompt += " realistic, realism"
|
36 |
|
@@ -48,7 +52,11 @@ def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
|
|
48 |
iface = gr.Interface(
|
49 |
fn=generate_image,
|
50 |
inputs=[
|
51 |
-
gr.Textbox(
|
|
|
|
|
|
|
|
|
52 |
gr.Slider(0, 10000, step=1, value=0, label="Seed (0 for random)"),
|
53 |
gr.Slider(256, 1024, step=64, value=1024, label="Width"),
|
54 |
gr.Slider(256, 1024, step=64, value=1024, label="Height"),
|
@@ -56,12 +64,13 @@ iface = gr.Interface(
|
|
56 |
gr.Checkbox(value=True, label="Randomize Seed")
|
57 |
],
|
58 |
outputs=gr.Image(type="pil", label="Generated Image"),
|
59 |
-
title="Flux
|
60 |
description=(
|
61 |
"This demo uses the Flux Super Realism LoRA model for ultra-realistic image generation. "
|
62 |
-
"
|
|
|
63 |
),
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|
67 |
-
iface.launch(share=False)
|
|
|
2 |
import torch
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
# Load the base model and apply the LoRA weights for super realism
|
7 |
def load_pipeline():
|
|
|
9 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
10 |
trigger_word = "Super Realism" # Recommended trigger word
|
11 |
|
12 |
+
|
13 |
+
|
14 |
pipe = DiffusionPipeline.from_pretrained(
|
15 |
base_model,
|
16 |
torch_dtype=torch.bfloat16,
|
17 |
+
|
18 |
)
|
19 |
|
20 |
+
# Load the LoRA weights into the pipeline
|
21 |
+
pipe.load_lora_weights(lora_repo)
|
22 |
|
23 |
# Use GPU if available
|
24 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
30 |
|
31 |
# Define a function for image generation
|
32 |
def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
|
33 |
+
# If randomize_seed is selected, allow the model to generate a random seed
|
34 |
if randomize_seed:
|
35 |
seed = None
|
36 |
|
37 |
+
# Ensure the prompt includes realism trigger words if needed
|
38 |
if "realistic" not in prompt.lower() and "realism" not in prompt.lower():
|
39 |
prompt += " realistic, realism"
|
40 |
|
|
|
52 |
iface = gr.Interface(
|
53 |
fn=generate_image,
|
54 |
inputs=[
|
55 |
+
gr.Textbox(
|
56 |
+
lines=2,
|
57 |
+
label="Prompt",
|
58 |
+
placeholder="Enter your prompt, e.g., 'A tiny astronaut hatching from an egg on the moon, 4k, planet theme'"
|
59 |
+
),
|
60 |
gr.Slider(0, 10000, step=1, value=0, label="Seed (0 for random)"),
|
61 |
gr.Slider(256, 1024, step=64, value=1024, label="Width"),
|
62 |
gr.Slider(256, 1024, step=64, value=1024, label="Height"),
|
|
|
64 |
gr.Checkbox(value=True, label="Randomize Seed")
|
65 |
],
|
66 |
outputs=gr.Image(type="pil", label="Generated Image"),
|
67 |
+
title="Flux Super Realism LoRA Demo",
|
68 |
description=(
|
69 |
"This demo uses the Flux Super Realism LoRA model for ultra-realistic image generation. "
|
70 |
+
"You can use the trigger word 'Super Realism' (recommended) along with other realism-related words "
|
71 |
+
"to guide the generation process."
|
72 |
),
|
73 |
)
|
74 |
|
75 |
if __name__ == "__main__":
|
76 |
+
iface.launch(share=False)
|