Anurag181011 commited on
Commit
92b1b58
·
verified ·
1 Parent(s): 70c0198

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -7
app.py CHANGED
@@ -2,7 +2,6 @@ import os
2
  import torch
3
  from diffusers import DiffusionPipeline
4
  import gradio as gr
5
- from peft import PeftModel
6
 
7
  # Load the base model and apply the LoRA weights for super realism
8
  def load_pipeline():
@@ -10,13 +9,16 @@ def load_pipeline():
10
  lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
11
  trigger_word = "Super Realism" # Recommended trigger word
12
 
 
 
13
  pipe = DiffusionPipeline.from_pretrained(
14
  base_model,
15
  torch_dtype=torch.bfloat16,
 
16
  )
17
 
18
- # Load the LoRA weights into the pipeline using PEFT
19
- pipe = PeftModel.from_pretrained(pipe, lora_repo)
20
 
21
  # Use GPU if available
22
  device = "cuda" if torch.cuda.is_available() else "cpu"
@@ -28,9 +30,11 @@ pipe = load_pipeline()
28
 
29
  # Define a function for image generation
30
  def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
 
31
  if randomize_seed:
32
  seed = None
33
 
 
34
  if "realistic" not in prompt.lower() and "realism" not in prompt.lower():
35
  prompt += " realistic, realism"
36
 
@@ -48,7 +52,11 @@ def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
48
  iface = gr.Interface(
49
  fn=generate_image,
50
  inputs=[
51
- gr.Textbox(lines=2, label="Prompt", placeholder="Enter your prompt..."),
 
 
 
 
52
  gr.Slider(0, 10000, step=1, value=0, label="Seed (0 for random)"),
53
  gr.Slider(256, 1024, step=64, value=1024, label="Width"),
54
  gr.Slider(256, 1024, step=64, value=1024, label="Height"),
@@ -56,12 +64,13 @@ iface = gr.Interface(
56
  gr.Checkbox(value=True, label="Randomize Seed")
57
  ],
58
  outputs=gr.Image(type="pil", label="Generated Image"),
59
- title="Flux Supers Realism LoRA Demo",
60
  description=(
61
  "This demo uses the Flux Super Realism LoRA model for ultra-realistic image generation. "
62
- "Use the trigger word 'Super Realism' for better results."
 
63
  ),
64
  )
65
 
66
  if __name__ == "__main__":
67
- iface.launch(share=False)
 
2
  import torch
3
  from diffusers import DiffusionPipeline
4
  import gradio as gr
 
5
 
6
  # Load the base model and apply the LoRA weights for super realism
7
  def load_pipeline():
 
9
  lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
10
  trigger_word = "Super Realism" # Recommended trigger word
11
 
12
+
13
+
14
  pipe = DiffusionPipeline.from_pretrained(
15
  base_model,
16
  torch_dtype=torch.bfloat16,
17
+
18
  )
19
 
20
+ # Load the LoRA weights into the pipeline
21
+ pipe.load_lora_weights(lora_repo)
22
 
23
  # Use GPU if available
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
30
 
31
  # Define a function for image generation
32
  def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
33
+ # If randomize_seed is selected, allow the model to generate a random seed
34
  if randomize_seed:
35
  seed = None
36
 
37
+ # Ensure the prompt includes realism trigger words if needed
38
  if "realistic" not in prompt.lower() and "realism" not in prompt.lower():
39
  prompt += " realistic, realism"
40
 
 
52
  iface = gr.Interface(
53
  fn=generate_image,
54
  inputs=[
55
+ gr.Textbox(
56
+ lines=2,
57
+ label="Prompt",
58
+ placeholder="Enter your prompt, e.g., 'A tiny astronaut hatching from an egg on the moon, 4k, planet theme'"
59
+ ),
60
  gr.Slider(0, 10000, step=1, value=0, label="Seed (0 for random)"),
61
  gr.Slider(256, 1024, step=64, value=1024, label="Width"),
62
  gr.Slider(256, 1024, step=64, value=1024, label="Height"),
 
64
  gr.Checkbox(value=True, label="Randomize Seed")
65
  ],
66
  outputs=gr.Image(type="pil", label="Generated Image"),
67
+ title="Flux Super Realism LoRA Demo",
68
  description=(
69
  "This demo uses the Flux Super Realism LoRA model for ultra-realistic image generation. "
70
+ "You can use the trigger word 'Super Realism' (recommended) along with other realism-related words "
71
+ "to guide the generation process."
72
  ),
73
  )
74
 
75
  if __name__ == "__main__":
76
+ iface.launch(share=False)