Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,66 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
import gradio as gr
|
4 |
|
5 |
+
# Load the base model and apply the LoRA weights for super realism
|
6 |
+
def load_pipeline():
|
7 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
8 |
+
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
9 |
+
trigger_word = "Super Realism" # Recommended trigger word
|
10 |
|
11 |
+
# Load the base model
|
12 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
13 |
+
|
14 |
+
# Load the LoRA weights into the pipeline
|
15 |
+
pipe.load_lora_weights(lora_repo)
|
16 |
+
|
17 |
+
# Use GPU if available
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
pipe.to(device)
|
20 |
+
return pipe
|
21 |
+
|
22 |
+
# Instantiate the pipeline once on Space startup
|
23 |
+
pipe = load_pipeline()
|
24 |
+
|
25 |
+
# Define a function for image generation
|
26 |
+
def generate_image(prompt, seed, width, height, guidance_scale, randomize_seed):
|
27 |
+
# If randomize_seed is selected, allow the model to generate a random seed
|
28 |
+
if randomize_seed:
|
29 |
+
seed = None
|
30 |
+
|
31 |
+
# Ensure the prompt includes realism trigger words if needed
|
32 |
+
if "realistic" not in prompt.lower() and "realism" not in prompt.lower():
|
33 |
+
prompt += " realistic, realism"
|
34 |
+
|
35 |
+
# Generate the image
|
36 |
+
output = pipe(
|
37 |
+
prompt=prompt,
|
38 |
+
seed=seed,
|
39 |
+
width=width,
|
40 |
+
height=height,
|
41 |
+
guidance_scale=guidance_scale
|
42 |
+
)
|
43 |
+
return output.images[0]
|
44 |
+
|
45 |
+
# Set up Gradio interface
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=generate_image,
|
48 |
+
inputs=[
|
49 |
+
gr.inputs.Textbox(lines=2, label="Prompt", placeholder="Enter your prompt, e.g., 'A tiny astronaut hatching from an egg on the moon, 4k, planet theme'"),
|
50 |
+
gr.inputs.Slider(0, 10000, step=1, default=0, label="Seed (0 for random)"),
|
51 |
+
gr.inputs.Slider(256, 1024, step=64, default=1024, label="Width"),
|
52 |
+
gr.inputs.Slider(256, 1024, step=64, default=1024, label="Height"),
|
53 |
+
gr.inputs.Slider(1, 20, step=0.5, default=6, label="Guidance Scale"),
|
54 |
+
gr.inputs.Checkbox(default=True, label="Randomize Seed")
|
55 |
+
],
|
56 |
+
outputs=gr.outputs.Image(type="pil", label="Generated Image"),
|
57 |
+
title="Flux Super Realism LoRA Demo",
|
58 |
+
description=(
|
59 |
+
"This demo uses the Flux Super Realism LoRA model for ultra-realistic image generation. "
|
60 |
+
"You can use the trigger word 'Super Realism' (recommended) along with other realism-related words "
|
61 |
+
"to guide the generation process."
|
62 |
+
),
|
63 |
+
)
|
64 |
+
|
65 |
+
if __name__ == "__main__":
|
66 |
+
iface.launch()
|