Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from diffusers import DiffusionPipeline | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
from functools import lru_cache | |
from PIL import Image | |
from transformers import CLIPImageProcessor | |
def load_pipeline(): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Use FP16 when CUDA is available, along with a revision flag if supported. | |
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32 | |
revision = "fp16" if device.type == "cuda" else None | |
base_model = "black-forest-labs/FLUX.1-dev" | |
pipe = DiffusionPipeline.from_pretrained( | |
base_model, | |
torch_dtype=torch_dtype, | |
low_cpu_mem_usage=True, | |
revision=revision, | |
) | |
# Load LoRA weights | |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA" | |
pipe.load_lora_weights(lora_repo) | |
# Load safety checker and image processor. | |
# If memory remains an issue, you can disable the safety checker below. | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker" | |
) | |
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
if device.type == "cuda": | |
# Use attention slicing for further memory savings. | |
pipe.enable_attention_slicing() | |
# Offload layers to CPU when not in use. | |
pipe.enable_sequential_cpu_offload() | |
return pipe, safety_checker, image_processor | |
pipe, safety_checker, image_processor = load_pipeline() | |
def generate_image( | |
prompt, | |
seed=42, | |
width=512, # Keep resolution low by default | |
height=512, | |
guidance_scale=6, | |
steps=28, | |
progress=gr.Progress() | |
): | |
try: | |
progress(0, desc="Initializing...") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
generator = torch.Generator(device=device).manual_seed(seed) | |
# Auto-add trigger words if not present | |
if "super realism" not in prompt.lower(): | |
prompt = f"Super Realism, {prompt}" | |
with torch.inference_mode(): | |
result = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=steps, | |
generator=generator, | |
) | |
image = result.images[0] | |
progress(1, desc="Safety checking...") | |
# Process image for safety checking | |
safety_input = image_processor(image, return_tensors="pt") | |
np_image = np.array(image) | |
_, nsfw_detected = safety_checker( | |
images=[np_image], | |
clip_input=safety_input.pixel_values | |
) | |
if nsfw_detected[0]: | |
return Image.new("RGB", (width, height)), "NSFW content detected" | |
# Clear CUDA cache | |
if device.type == "cuda": | |
torch.cuda.empty_cache() | |
return image, "Generation successful" | |
except Exception as e: | |
return Image.new("RGB", (width, height)), f"Error: {str(e)}" | |
with gr.Blocks() as app: | |
gr.Markdown("# Flux Super Realism Generator") | |
with gr.Row(): | |
with gr.Column(): | |
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person") | |
seed_input = gr.Slider(0, 1000, value=42, label="Seed") | |
# Limit the resolution sliders to help avoid memory overuse. | |
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width") | |
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height") | |
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale") | |
steps_input = gr.Slider(10, 100, value=28, label="Steps") | |
submit = gr.Button("Generate") | |
with gr.Column(): | |
output_image = gr.Image(label="Result", type="pil") | |
status = gr.Textbox(label="Status") | |
submit.click( | |
generate_image, | |
inputs=[prompt_input, seed_input, width_input, height_input, guidance_input, steps_input], | |
outputs=[output_image, status] | |
) | |
# Queue settings to limit concurrent requests | |
app.queue(max_size=3).launch() | |