Anurag Bhardwaj
Update app.py
a37a20c verified
raw
history blame
4.34 kB
import gradio as gr
import torch
import numpy as np
from diffusers import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from functools import lru_cache
from PIL import Image
from transformers import CLIPImageProcessor
@lru_cache(maxsize=1)
def load_pipeline():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Use FP16 when CUDA is available, along with a revision flag if supported.
torch_dtype = torch.float16 if device.type == "cuda" else torch.float32
revision = "fp16" if device.type == "cuda" else None
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(
base_model,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
revision=revision,
)
# Load LoRA weights
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
pipe.load_lora_weights(lora_repo)
# Load safety checker and image processor.
# If memory remains an issue, you can disable the safety checker below.
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
"CompVis/stable-diffusion-safety-checker"
)
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
if device.type == "cuda":
# Use attention slicing for further memory savings.
pipe.enable_attention_slicing()
# Offload layers to CPU when not in use.
pipe.enable_sequential_cpu_offload()
return pipe, safety_checker, image_processor
pipe, safety_checker, image_processor = load_pipeline()
def generate_image(
prompt,
seed=42,
width=512, # Keep resolution low by default
height=512,
guidance_scale=6,
steps=28,
progress=gr.Progress()
):
try:
progress(0, desc="Initializing...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = torch.Generator(device=device).manual_seed(seed)
# Auto-add trigger words if not present
if "super realism" not in prompt.lower():
prompt = f"Super Realism, {prompt}"
with torch.inference_mode():
result = pipe(
prompt=prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=steps,
generator=generator,
)
image = result.images[0]
progress(1, desc="Safety checking...")
# Process image for safety checking
safety_input = image_processor(image, return_tensors="pt")
np_image = np.array(image)
_, nsfw_detected = safety_checker(
images=[np_image],
clip_input=safety_input.pixel_values
)
if nsfw_detected[0]:
return Image.new("RGB", (width, height)), "NSFW content detected"
# Clear CUDA cache
if device.type == "cuda":
torch.cuda.empty_cache()
return image, "Generation successful"
except Exception as e:
return Image.new("RGB", (width, height)), f"Error: {str(e)}"
with gr.Blocks() as app:
gr.Markdown("# Flux Super Realism Generator")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
# Limit the resolution sliders to help avoid memory overuse.
width_input = gr.Slider(256, 1024, value=512, step=64, label="Width")
height_input = gr.Slider(256, 1024, value=512, step=64, label="Height")
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
steps_input = gr.Slider(10, 100, value=28, label="Steps")
submit = gr.Button("Generate")
with gr.Column():
output_image = gr.Image(label="Result", type="pil")
status = gr.Textbox(label="Status")
submit.click(
generate_image,
inputs=[prompt_input, seed_input, width_input, height_input, guidance_input, steps_input],
outputs=[output_image, status]
)
# Queue settings to limit concurrent requests
app.queue(max_size=3).launch()