Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,900 Bytes
2d4d668 96d90f0 c34a1b5 8d7b14b c34a1b5 96d90f0 2d4d668 96d90f0 60bb583 2d4d668 3bf7a67 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 60bb583 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 60bb583 96d90f0 c34a1b5 96d90f0 c34a1b5 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 60bb583 96d90f0 2d4d668 60bb583 2d4d668 60bb583 2d4d668 60bb583 2d4d668 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 2d4d668 60bb583 96d90f0 2d4d668 c34a1b5 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 2d4d668 96d90f0 8d7b14b 96d90f0 2d4d668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np
from huggingface_hub import login
# One-time Hugging Face authentication
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
login(HF_TOKEN)
print("Authenticated with Hugging Face.")
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
DESCRIPTIONz = ""
if not torch.cuda.is_available():
DESCRIPTIONz += "\n<p>⚠️ Running on CPU. This may not work as expected.</p>"
# Load base model and LoRA weights
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism" # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
# Define style list for prompt enhancements
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
]
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
@spaces.GPU(duration=60, enable_queue=True)
def generate(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt = apply_style(style_name, prompt)
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
images = pipe(
prompt=positive_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(image_paths)
return image_paths, seed
examples = [
"Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
"Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
"Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
"Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The woman's eyes are closed, her lips slightly parted, as if she is looking up at the sky. Her hair cascades over her shoulders, framing her face. She wears a sleeveless top adorned with tiny white dots and a gold chain necklace around her neck. Her left earrings add a pop of color to the scene."
]
# Updated CSS: full-width container, dark theme with black background, and violet accents
css = '''
.gradio-container {
max-width: 100% !important;
background-color: #000000;
padding: 20px;
border-radius: 0px;
box-shadow: none;
color: white;
}
body {
background-color: #000000;
color: white;
}
h1 {
text-align: center;
color: #8A2BE2;
margin-bottom: 10px;
}
footer {
visibility: hidden;
}
.submit-btn {
background-color: #8A2BE2 !important;
color: white !important;
border-radius: 8px;
padding: 10px 20px;
font-weight: bold;
}
.submit-btn:hover {
background-color: #6a0dad !important;
}
.accordion-header {
background-color: #1a1a1a;
color: white;
}
.gradio-container .accordion-content {
background-color: #000000;
color: white;
}
'''
with gr.Blocks(css=css, theme="default") as demo:
gr.Markdown("<h1>FLUX Image Generator</h1>")
gr.Markdown(DESCRIPTIONz)
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate 🤗", elem_classes="submit-btn")
with gr.Accordion("Advanced options", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=64,
value=768,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=64,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=3.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=28,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Column(scale=2):
result = gr.Gallery(label="Result", columns=1, show_label=False)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=40).launch()
|