File size: 7,900 Bytes
2d4d668
96d90f0
c34a1b5
8d7b14b
c34a1b5
96d90f0
 
 
 
 
2d4d668
96d90f0
60bb583
2d4d668
 
 
 
3bf7a67
96d90f0
 
 
 
 
 
 
 
 
 
 
 
2d4d668
96d90f0
2d4d668
96d90f0
60bb583
96d90f0
2d4d668
96d90f0
 
 
 
 
2d4d668
96d90f0
 
 
 
 
 
 
 
 
 
 
 
 
60bb583
96d90f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c34a1b5
96d90f0
 
c34a1b5
96d90f0
 
2d4d668
96d90f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d4d668
96d90f0
 
60bb583
96d90f0
2d4d668
60bb583
 
2d4d668
60bb583
 
 
 
 
 
 
2d4d668
 
 
60bb583
2d4d668
 
96d90f0
2d4d668
96d90f0
 
2d4d668
96d90f0
2d4d668
 
 
96d90f0
 
2d4d668
 
 
60bb583
 
 
 
 
 
96d90f0
 
 
2d4d668
 
 
 
c34a1b5
96d90f0
 
 
 
 
 
 
 
2d4d668
96d90f0
2d4d668
96d90f0
 
 
 
 
 
 
 
 
 
2d4d668
96d90f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7b14b
96d90f0
 
2d4d668
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import os
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
import uuid
from typing import Tuple
import numpy as np
from huggingface_hub import login

# One-time Hugging Face authentication
HF_TOKEN = os.environ.get("HF_TOKEN")
if HF_TOKEN:
    login(HF_TOKEN)
    print("Authenticated with Hugging Face.")

def save_image(img):
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

MAX_SEED = np.iinfo(np.int32).max

DESCRIPTIONz = ""
if not torch.cuda.is_available():
    DESCRIPTIONz += "\n<p>⚠️ Running on CPU. This may not work as expected.</p>"

# Load base model and LoRA weights
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism"  # Leave trigger_word blank if not used.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")

# Define style list for prompt enhancements
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
    },
   
]
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())

def apply_style(style_name: str, positive: str) -> str:
    return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)

@spaces.GPU(duration=60, enable_queue=True)
def generate(
    prompt: str,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    randomize_seed: bool = False,
    style_name: str = DEFAULT_STYLE_NAME,
    progress=gr.Progress(track_tqdm=True),
):
    seed = int(randomize_seed_fn(seed, randomize_seed))
    positive_prompt = apply_style(style_name, prompt)
    
    if trigger_word:
        positive_prompt = f"{trigger_word} {positive_prompt}"
    
    images = pipe(
        prompt=positive_prompt,
        width=width,
        height=height,
        guidance_scale=guidance_scale,
        num_inference_steps=28,
        num_images_per_prompt=1,
        output_type="pil",
    ).images
    image_paths = [save_image(img) for img in images]
    print(image_paths)
    return image_paths, seed

examples = [
    "Woman in a red jacket, snowy, in the style of hyper-realistic portraiture, caninecore, mountainous vistas, timeless beauty, palewave, iconic, distinctive noses --ar 72:101 --stylize 750 --v 6",
    "Super Realism, Headshot of handsome young man, wearing dark gray sweater with buttons and big shawl collar, brown hair and short beard, serious look on his face, black background, soft studio lighting, portrait photography --ar 85:128 --v 6.0 --style",
    "Super Realism, High-resolution photograph, woman, UHD, photorealistic, shot on a Sony A7III --chaos 20 --ar 1:2 --style raw --stylize 250",
    "Super-realism, Purple Dreamy, a medium-angle shot of a young woman with long brown hair, wearing a pair of eye-level glasses, stands in front of a backdrop of purple and white lights. The woman's eyes are closed, her lips slightly parted, as if she is looking up at the sky. Her hair cascades over her shoulders, framing her face. She wears a sleeveless top adorned with tiny white dots and a gold chain necklace around her neck. Her left earrings add a pop of color to the scene."
]

# Updated CSS: full-width container, dark theme with black background, and violet accents
css = '''
.gradio-container {
    max-width: 100% !important;
    background-color: #000000;
    padding: 20px;
    border-radius: 0px;
    box-shadow: none;
    color: white;
}
body {
    background-color: #000000;
    color: white;
}
h1 {
    text-align: center;
    color: #8A2BE2;
    margin-bottom: 10px;
}
footer {
    visibility: hidden;
}
.submit-btn {
    background-color: #8A2BE2 !important;
    color: white !important;
    border-radius: 8px;
    padding: 10px 20px;
    font-weight: bold;
}
.submit-btn:hover {
    background-color: #6a0dad !important;
}
.accordion-header {
    background-color: #1a1a1a;
    color: white;
}
.gradio-container .accordion-content {
    background-color: #000000;
    color: white;
}
'''

with gr.Blocks(css=css, theme="default") as demo:
    gr.Markdown("<h1>FLUX Image Generator</h1>")
    gr.Markdown(DESCRIPTIONz)
    
    with gr.Row():
        with gr.Column(scale=1):
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Generate 🤗", elem_classes="submit-btn")
            
            with gr.Accordion("Advanced options", open=True):
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                    visible=True
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=2048,
                        step=64,
                        value=768,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=2048,
                        step=64,
                        value=1024,
                    )
                
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.1,
                        maximum=20.0,
                        step=0.1,
                        value=3.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=1,
                        maximum=40,
                        step=1,
                        value=28,
                    )

                style_selection = gr.Radio(
                    show_label=True,
                    container=True,
                    interactive=True,
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                    label="Quality Style",
                )
        with gr.Column(scale=2):
            result = gr.Gallery(label="Result", columns=1, show_label=False)
            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=[result, seed],
                fn=generate,
                cache_examples=False,
            )

    gr.on(
        triggers=[
            prompt.submit,
            run_button.click,
        ],
        fn=generate,
        inputs=[
            prompt,
            seed,
            width,
            height,
            guidance_scale,
            randomize_seed,
            style_selection,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=40).launch()