Synced repo using 'sync_with_huggingface' Github Action
Browse files- app.py +0 -1
- strategies.py +1 -0
- utils.py +92 -1
app.py
CHANGED
@@ -23,7 +23,6 @@ def run(stock, interval, period, strategy, swing_hl, ema1=9, ema2=21, cross_clos
|
|
23 |
|
24 |
backtest_plot = gr.Plot()
|
25 |
|
26 |
-
|
27 |
# Plotting backtest plot based on strategy.
|
28 |
if strategy == "Order Block":
|
29 |
backtest_plot = smc_plot_backtest(data, 'test.html', swing_hl)
|
|
|
23 |
|
24 |
backtest_plot = gr.Plot()
|
25 |
|
|
|
26 |
# Plotting backtest plot based on strategy.
|
27 |
if strategy == "Order Block":
|
28 |
backtest_plot = smc_plot_backtest(data, 'test.html', swing_hl)
|
strategies.py
CHANGED
@@ -150,6 +150,7 @@ class SMCStructure(TrailingStrategy):
|
|
150 |
swings = swings[~np.isnan(swings['Level'])]
|
151 |
return swings['Level'].iloc[-2]
|
152 |
|
|
|
153 |
|
154 |
if __name__ == "__main__":
|
155 |
from utils import fetch
|
|
|
150 |
swings = swings[~np.isnan(swings['Level'])]
|
151 |
return swings['Level'].iloc[-2]
|
152 |
|
153 |
+
strategies = {'Order Block': SMC_test, 'Order Block with EMA': SMC_ema , 'Structure trading': SMCStructure}
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
from utils import fetch
|
utils.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import yfinance as yf
|
2 |
from backtesting import Backtest
|
|
|
|
|
3 |
|
4 |
from strategies import SMC_test, SMC_ema, SMCStructure
|
5 |
|
@@ -32,6 +34,95 @@ def smc_ema_backtest(data, ema1, ema2, closecross, **kwargs):
|
|
32 |
def smc_structure_backtest(data, swing_hl, **kwargs):
|
33 |
return Backtest(data, SMCStructure, **kwargs).run(swing_hl=swing_hl)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
if __name__ == "__main__":
|
|
|
36 |
# data = fetch('RELIANCE.NS', period='1y', interval='15m')
|
37 |
-
df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
|
|
|
|
|
|
|
|
|
|
1 |
import yfinance as yf
|
2 |
from backtesting import Backtest
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
|
6 |
from strategies import SMC_test, SMC_ema, SMCStructure
|
7 |
|
|
|
34 |
def smc_structure_backtest(data, swing_hl, **kwargs):
|
35 |
return Backtest(data, SMCStructure, **kwargs).run(swing_hl=swing_hl)
|
36 |
|
37 |
+
def random_test(strategy: str, period: str, interval: str, no_of_stocks: int = 5, **kwargs):
|
38 |
+
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
39 |
+
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
40 |
+
|
41 |
+
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
42 |
+
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
43 |
+
|
44 |
+
# Generating random indices between 0 and len(nifty50).
|
45 |
+
random_indices = random.sample(range(0, len(nifty50)), no_of_stocks)
|
46 |
+
|
47 |
+
df = pd.DataFrame()
|
48 |
+
|
49 |
+
for i in random_indices:
|
50 |
+
# Fetching ohlc of random ticker_symbol.
|
51 |
+
ticker_symbol = nifty50['YahooEquiv'].values[i]
|
52 |
+
data = fetch(ticker_symbol, period, interval)
|
53 |
+
|
54 |
+
if strategy == "Order Block":
|
55 |
+
backtest_results = smc_backtest(data, kwargs['swing_hl'])
|
56 |
+
elif strategy == "Order Block with EMA":
|
57 |
+
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
58 |
+
elif strategy == "Structure trading":
|
59 |
+
backtest_results = smc_structure_backtest(data, kwargs['swing_hl'])
|
60 |
+
else:
|
61 |
+
raise Exception('Strategy not found')
|
62 |
+
|
63 |
+
# Converting pd.Series to pd.Dataframe
|
64 |
+
backtest_results = backtest_results.to_frame().transpose()
|
65 |
+
|
66 |
+
backtest_results['stock'] = ticker_symbol
|
67 |
+
|
68 |
+
# Reordering columns.
|
69 |
+
# cols = df.columns.tolist()
|
70 |
+
# cols = cols[-1:] + cols[:-1]
|
71 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
|
72 |
+
backtest_results = backtest_results[cols]
|
73 |
+
|
74 |
+
df = pd.concat([df, backtest_results])
|
75 |
+
|
76 |
+
df = df.sort_values(by=['Return [%]'], ascending=False)
|
77 |
+
|
78 |
+
return df
|
79 |
+
|
80 |
+
def complete_test(strategy: str, period: str, interval: str, **kwargs):
|
81 |
+
nifty50 = pd.read_csv("data/ind_nifty50list.csv")
|
82 |
+
ticker_list = pd.read_csv("data/Ticker_List_NSE_India.csv")
|
83 |
+
|
84 |
+
# Merging nifty50 and ticker_list dataframes to get 'YahooEquiv' column.
|
85 |
+
nifty50 = nifty50.merge(ticker_list, "inner", left_on=['Symbol'], right_on=['SYMBOL'])
|
86 |
+
|
87 |
+
df = pd.DataFrame()
|
88 |
+
|
89 |
+
for i in range(len(nifty50)):
|
90 |
+
# Fetching ohlc of random ticker_symbol.
|
91 |
+
ticker_symbol = nifty50['YahooEquiv'].values[i]
|
92 |
+
data = fetch(ticker_symbol, period, interval)
|
93 |
+
|
94 |
+
if strategy == "Order Block":
|
95 |
+
backtest_results = smc_backtest(data, kwargs['swing_hl'])
|
96 |
+
elif strategy == "Order Block with EMA":
|
97 |
+
backtest_results = smc_ema_backtest(data, kwargs['ema1'], kwargs['ema2'], kwargs['cross_close'])
|
98 |
+
elif strategy == "Structure trading":
|
99 |
+
backtest_results = smc_structure_backtest(data, kwargs['swing_hl'])
|
100 |
+
else:
|
101 |
+
raise Exception('Strategy not found')
|
102 |
+
|
103 |
+
# Converting pd.Series to pd.Dataframe
|
104 |
+
backtest_results = backtest_results.to_frame().transpose()
|
105 |
+
|
106 |
+
backtest_results['stock'] = ticker_symbol
|
107 |
+
|
108 |
+
# Reordering columns.
|
109 |
+
# cols = df.columns.tolist()
|
110 |
+
# cols = cols[-1:] + cols[:-1]
|
111 |
+
cols = ['stock', 'Start', 'End', 'Return [%]', 'Equity Final [$]', 'Buy & Hold Return [%]', '# Trades', 'Win Rate [%]', 'Best Trade [%]', 'Worst Trade [%]', 'Avg. Trade [%]']
|
112 |
+
backtest_results = backtest_results[cols]
|
113 |
+
|
114 |
+
df = pd.concat([df, backtest_results])
|
115 |
+
|
116 |
+
df = df.sort_values(by=['Return [%]'], ascending=False)
|
117 |
+
|
118 |
+
return df
|
119 |
+
|
120 |
+
|
121 |
if __name__ == "__main__":
|
122 |
+
# random_testing("")
|
123 |
# data = fetch('RELIANCE.NS', period='1y', interval='15m')
|
124 |
+
# df = yf.download('RELIANCE.NS', period='1yr', interval='15m')
|
125 |
+
|
126 |
+
rt = all_testing("Order Block", '1mo', '15m', swing_hl=20)
|
127 |
+
rt.to_excel('test/all_testing_1.xlsx', index=False)
|
128 |
+
print(rt)
|