Anupam251272's picture
Create app.py
4ec1d8c verified
import os
import gradio as gr
import pdfplumber
import requests
import faiss
import json
import torch
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
import numpy as np
import tempfile
import logging
from datetime import datetime
from typing import List, Dict
# Optimize CUDA memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CaseStudyGenerator:
def __init__(self):
self.model_name = "facebook/opt-2.7b"
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# Clear any reserved memory
if self.device == "cuda":
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
model_kwargs = {
'torch_dtype': torch.float16 if self.device == "cuda" else torch.float32
}
try:
self.model = AutoModelForCausalLM.from_pretrained(self.model_name, **model_kwargs)
if self.device == "cuda":
self.model = self.model.to(self.device)
self.model.gradient_checkpointing_enable()
except RuntimeError as e:
logger.warning(f"Memory issue detected: {e}, attempting 8-bit loading.")
try:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
self.model = AutoModelForCausalLM.from_pretrained(self.model_name, quantization_config=quantization_config)
except ImportError:
logger.error("Missing 'bitsandbytes'. Install it using 'pip install -U bitsandbytes'")
logger.info("Switching to CPU to continue operations.")
self.device = "cpu"
self.model = AutoModelForCausalLM.from_pretrained(self.model_name, torch_dtype=torch.float32)
self.generator = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device=0 if self.device == "cuda" else -1,
max_length=2048,
num_return_sequences=1,
temperature=0.8,
top_p=0.95,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.dimension = 384
self.index = faiss.IndexFlatL2(self.dimension)
self.stored_texts: List[Dict] = []
def clean_url(self, url: str) -> str:
if not url.startswith(('http://', 'https://')):
return ""
return url.split('?')[0][:100]
def fetch_articles(self, topic: str) -> List[str]:
try:
search_url = f"https://www.google.com/search?q={topic.replace(' ', '+')}+case+study+manufacturing+strategy"
headers = {"User-Agent": "Mozilla/5.0"}
response = requests.get(search_url, headers=headers, timeout=10)
response.raise_for_status()
soup = BeautifulSoup(response.text, "html.parser")
articles = [self.clean_url(link.get("href", "")) for link in soup.find_all("a") if "google" not in link.get("href", "")]
return articles[:5] or ["No articles found"]
except Exception as e:
logger.error(f"Error fetching articles: {str(e)}")
return ["Error fetching articles"]
def process_pdf(self, pdf_file) -> str:
try:
if pdf_file is None:
return "No PDF provided"
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_pdf:
temp_pdf.write(pdf_file.read())
temp_path = temp_pdf.name
text = []
with pdfplumber.open(temp_path) as pdf:
text = [page.extract_text().strip() for page in pdf.pages if page.extract_text()]
os.unlink(temp_path)
return "\n".join(text) or "No text extracted from PDF"
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
return "Error processing PDF"
def generate_case_study(self, topic: str, pdf=None) -> str:
try:
if self.device == "cuda":
torch.cuda.empty_cache()
articles = self.fetch_articles(topic)
pdf_text = self.process_pdf(pdf) if pdf else "No PDF provided"
prompt = f"""Write a professional case study about {topic}.
Background Information:
- Topic: {topic}
- Supporting Documents: {pdf_text[:500]}
- Related Sources: {', '.join(articles)}
Format your response as:
1. Executive Summary
2. Company Background
3. Challenge Analysis
4. Strategic Implementation
5. Results and Impact
6. Key Learnings
"""
output = self.generator(
prompt,
max_new_tokens=1024,
num_return_sequences=1,
temperature=0.8,
top_p=0.95,
do_sample=True,
repetition_penalty=1.2,
no_repeat_ngram_size=3
)
case_study = output[0]['generated_text'].replace(prompt, "").strip()
embedding = self.embedding_model.encode([case_study])[0]
self.index.add(embedding.reshape(1, -1))
self.stored_texts.append({
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
"topic": topic,
"content": case_study
})
return case_study
except Exception as e:
logger.error(f"Error generating case study: {str(e)}")
return f"Error generating case study: {str(e)}"
def retrieve_past_case_studies(self) -> str:
try:
if not self.stored_texts:
return "No case studies generated yet."
result = ""
for idx, case in enumerate(self.stored_texts[-5:], start=1):
result += f"Case Study {idx}\nTopic: {case['topic']}\nGenerated on: {case['timestamp']}\n\n{case['content']}\n\n=== End of Case Study ===\n\n"
return result
except Exception as e:
logger.error(f"Error retrieving past case studies: {str(e)}")
return "Error retrieving past case studies"
# Gradio interface
with gr.Blocks() as app:
gr.Markdown("# AI Case Study Generator (Optimized for GPU-T4 & CPU)")
with gr.Row():
topic = gr.Textbox(label="Enter Topic")
pdf = gr.File(label="Upload PDF", type="binary")
with gr.Row():
generate_btn = gr.Button("Generate Case Study")
retrieve_btn = gr.Button("Retrieve Past Case Studies")
output = gr.Textbox(label="Generated Case Study", lines=20)
past_cases = gr.Textbox(label="Past Case Studies", lines=20)
generator = CaseStudyGenerator()
generate_btn.click(generator.generate_case_study, inputs=[topic, pdf], outputs=output)
retrieve_btn.click(generator.retrieve_past_case_studies, outputs=past_cases)
# Launch the application
if __name__ == "__main__":
app.launch(share=True) # Remove enable_queue
# or, If using Gradio 3.x or later, use:
# app.queue().launch(share=True)