import torch import gradio as gr import json from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" def predict(image): classifier = pipeline(task="image-classification") preds = classifier(image) preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] prediction_json = json.dumps(preds) prediction_dict = json.loads(prediction_json) return prediction_dict description = """ """ gr.Interface( fn=predict, inputs=[ gr.inputs.Image(label="Image to classify", type="pil"), ], outputs="label", title="Comparateur d'image", description=description ).launch()