|
import torch |
|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
def predict(image): |
|
classifier = pipeline(task="image-classification") |
|
preds = classifier(image) |
|
preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds] |
|
return preds |
|
|
|
description = """ |
|
""" |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
gr.components.Image(label="Image to classify", type="pil"), |
|
], |
|
outputs="label", |
|
title="Comparateur d'image", |
|
description=description |
|
).launch() |
|
|