import numpy as np import json import torch from torchvision import transforms import util_functions.torch_utils as torch_utils import util_functions.image_utils as image_utils device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.manual_seed(0) np.random.seed(0) print('Building backbone and normalization layer...') backbone = torch_utils.build_backbone(path='models/dino_r50.pth') normlayer = torch_utils.load_normalization_layer(path='models/out2048.pth') model = torch_utils.NormLayerWrapper(backbone, normlayer) print('Building the hypercone...') FPR = 1e-6 angle = 1.462771101178447 # value for FPR=1e-6 and D=2048 rho = 1 + np.tan(angle)**2 carrier = torch.randn(1, 2048) carrier /= torch.norm(carrier, dim=1, keepdim=True) default_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def encode(image, epochs=10, psnr=44, lambda_w=1, lambda_i=1): img_orig = default_transform(image).to(device, non_blocking=True).unsqueeze(0) img = img_orig.clone().to(device, non_blocking=True) img.requires_grad = True optimizer = torch.optim.Adam([img], lr=1e-2) for iteration in range(epochs): print(f'iteration: {iteration}') x = image_utils.ssim_attenuation(img, img_orig) x = image_utils.psnr_clip(x, img_orig, psnr) ft = model(x) # BxCxWxH -> BxD dot_product = (ft @ carrier.T) # BxD @ Dx1 -> Bx1 norm = torch.norm(ft, dim=-1, keepdim=True) # Bx1 cosines = torch.abs(dot_product/norm) log10_pvalue = np.log10(torch_utils.cosine_pvalue(cosines.item(), ft.shape[-1])) loss_R = -(rho * dot_product**2 - norm**2) # B-B -> B loss_l2_img = torch.norm(x - img_orig)**2 # CxWxH -> 1 loss = lambda_w*loss_R + lambda_i*loss_l2_img optimizer.zero_grad() loss.backward() optimizer.step() logs = { "keyword": "img_optim", "iteration": iteration, "loss": loss.item(), "loss_R": loss_R.item(), "loss_l2_img": loss_l2_img.item(), "log10_pvalue": log10_pvalue.item(), } print("__log__:%s" % json.dumps(logs)) img = image_utils.ssim_attenuation(img, img_orig) img = image_utils.psnr_clip(img, img_orig, psnr) img = image_utils.round_pixel(img) img = img.squeeze(0).detach().cpu() img = transforms.ToPILImage()(image_utils.unnormalize_img(img).squeeze(0)) return img def decode(image): img = default_transform(image).to(device, non_blocking=True).unsqueeze(0) ft = model(img) # BxCxWxH -> BxD dot_product = (ft @ carrier.T) # BxD @ Dx1 -> Bx1 norm = torch.norm(ft, dim=-1, keepdim=True) # Bx1 cosines = torch.abs(dot_product/norm) log10_pvalue = np.log10(torch_utils.cosine_pvalue(cosines.item(), ft.shape[-1])) loss_R = -(rho * dot_product**2 - norm**2) # B-B -> B text_marked = "marked" if loss_R < 0 else "unmarked" return f'Image is {text_marked}'