Spaces:
Runtime error
Runtime error
import gradio as gr | |
from run_on_video.run import MomentDETRPredictor | |
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip | |
ckpt_path = "run_on_video/moment_detr_ckpt/model_best.ckpt" | |
clip_model_name_or_path = "ViT-B/32" | |
device = 'cpu' | |
moment_detr_predictor = MomentDETRPredictor( | |
ckpt_path=ckpt_path, | |
clip_model_name_or_path=clip_model_name_or_path, | |
device=device | |
) | |
def trim_video(video_path, start, end, output_file='result.mp4'): | |
ffmpeg_extract_subclip(video_path, start, end, targetname=output_file) | |
return output_file | |
with gr.Blocks() as demo: | |
output_videos = gr.State([]) | |
moment_scores = gr.State([]) | |
gr.HTML("""<h2 align="center"> ✍️ Highlight Detection with MomentDETR </h2>""") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Blocks(): | |
with gr.Column(): | |
gr.HTML("""<h3 align="center"> Input Video </h3>""") | |
input_video = gr.PlayableVideo() | |
with gr.Blocks(): | |
with gr.Column(): | |
gr.HTML("""<h3 align="center"> Highlight Videos </h3>""") | |
playable_video = gr.PlayableVideo() | |
with gr.Row(): | |
with gr.Column(): | |
retrieval_text = gr.Textbox( | |
label="Query text", | |
placeholder="What should be highlighted?", | |
visible=True | |
) | |
submit =gr.Button("Submit") | |
with gr.Column(): | |
display_score = gr.Markdown("### Moment Score: ") | |
radio_button = gr.Radio( | |
choices=[i for i in range(10)], | |
label="Moments", | |
value=0 | |
) | |
def update_video_player(radio_value, output_videos, moment_scores): | |
return { | |
playable_video: output_videos[radio_value], | |
display_score: f'### Moment Score: {moment_scores[radio_value]}' | |
} | |
def submit_video(input_video, retrieval_text): | |
print(f'== video path: {input_video}') | |
print(f'== retrieval_text: {retrieval_text}') | |
if retrieval_text is None: | |
retrieval_text = '' | |
predictions, video_frames = moment_detr_predictor.localize_moment( | |
video_path=input_video, | |
query_list=[retrieval_text] | |
) | |
pred_windows = [[pred[0], pred[1]]for pred in predictions[0]['pred_relevant_windows']] | |
scores = [pred[-1] for pred in predictions[0]['pred_relevant_windows']] | |
print(f'== predict start end time: {pred_windows}') | |
print(f'== prediction scores: {scores}') | |
output_files = [ trim_video( | |
video_path=input_video, | |
start=pred_windows[i][0], | |
end=pred_windows[i][1], | |
output_file=f'{i}.mp4' | |
) for i in range(10)] | |
print(f'== output_files: {output_files}') | |
return { | |
output_videos: output_files, | |
moment_scores: scores, | |
playable_video: output_files[0], | |
display_score: f'### Moment Score: {scores[0]}' | |
} | |
radio_button.change( | |
fn=update_video_player, | |
inputs=[radio_button, output_videos, moment_scores], | |
outputs=[playable_video, display_score] | |
) | |
submit.click( | |
fn=submit_video, | |
inputs=[input_video, retrieval_text], | |
outputs=[output_videos, moment_scores, playable_video, display_score] | |
) | |
demo.launch() |