import streamlit as st from dotenv import load_dotenv import pickle from huggingface_hub import Repository from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os # Step 1: Clone the Dataset Repository repo = Repository( local_dir="Private_Book", # Local directory to clone the repository repo_type="dataset", # Specify that this is a dataset repository clone_from="Anne31415/Private_Book", # Replace with your repository URL token=os.environ["HUB_TOKEN"] # Use the secret token to authenticate ) repo.git_pull() # Pull the latest changes (if any) # Step 2: Load the PDF File pdf_file_path = "Private_Book/Glossar_HELP_DESK_combi.pdf" # Replace with your PDF file path # Sidebar contents with st.sidebar: st.title(':orange[BinDoc GmbH]') st.markdown( "Experience the future of document interaction with the revolutionary" ) st.markdown("**BinDocs Chat App**.") st.markdown("Harnessing the power of a Large Language Model and AI technology,") st.markdown("this innovative platform redefines PDF engagement,") st.markdown("enabling dynamic conversations that bridge the gap between") st.markdown("human and machine intelligence.") add_vertical_space(3) # Add more vertical space between text blocks st.write('Made with ❤️ by BinDoc GmbH') api_key = os.getenv("OPENAI_API_KEY") # Retrieve the API key from st.secrets def load_pdf(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text=text) store_name, _ = os.path.splitext(os.path.basename(file_path)) if os.path.exists(f"{store_name}.pkl"): with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) else: embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) return VectorStore def load_chatbot(): return load_qa_chain(llm=OpenAI(), chain_type="stuff") def main(): st.title("BinDocs Chat App") st.markdown( """🤖 Welcome to BinDocs ChatBot! 🤖 Hello! I’m your friendly assistant, designed to help you navigate through our platform with ease. Here's a snapshot of what I can assist you with: 📘 **Glossary Inquiries:** Having trouble understanding specific terms? Ask me! For instance, if you are unsure about what "Belegarzt" means, just type in “What is a Belegarzt?” and I will provide you with a detailed explanation based on our glossary. 🆘 **Help Page Navigation:** I can guide you through our help page and answer your queries regarding any problems or inquiries you might have, such as “Forgot your Password?” or other platform-related concerns. #### How to Interact: Simply type in your question or concern, and I will do my best to assist you. Examples are shown at the bottom of this page. Try some out!""" ) # Directly specifying the path to the PDF file pdf_path = pdf_file_path if not os.path.exists(pdf_path): st.error("File not found. Please check the file path.") return if "chat_history" not in st.session_state: st.session_state['chat_history'] = [] display_chat_history(st.session_state['chat_history']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) new_messages_placeholder = st.empty() if pdf_path is not None: query = st.text_input("Ask questions about your PDF file (in any preferred language):") if st.button("Was genau ist ein Belegarzt?"): query = "Was genau ist ein Belegarzt?" if st.button("Wofür wird die Alpha-ID verwendet?"): query = "Wofür wird die Alpha-ID verwendet?" if st.button("Was sind die Vorteile des ambulanten operierens?"): query = "Was sind die Vorteile des ambulanten operierens?" if st.button("Was kann ich mit dem Prognose-Analyse Toll machen?"): query = "Was kann ich mit dem Prognose-Analyse Toll machen?" if st.button("Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?"): query = "Was sagt mir die Farbe der Balken der Bevölkerungsentwicklung?" if st.button("Ask") or (not st.session_state['chat_history'] and query) or (st.session_state['chat_history'] and query != st.session_state['chat_history'][-1][1]): st.session_state['chat_history'].append(("User", query, "new")) loading_message = st.empty() loading_message.text('Bot is thinking...') VectorStore = load_pdf(pdf_path) chain = load_chatbot() docs = VectorStore.similarity_search(query=query, k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=query) st.session_state['chat_history'].append(("Bot", response, "new")) # Display new messages at the bottom new_messages = st.session_state['chat_history'][-2:] for chat in new_messages: background_color = "#FFA07A" if chat[2] == "new" else "#acf" if chat[0] == "User" else "#caf" new_messages_placeholder.markdown(f"