import streamlit as st from dotenv import load_dotenv import pickle from PyPDF2 import PdfReader from streamlit_extras.add_vertical_space import add_vertical_space from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import FAISS from langchain.llms import OpenAI from langchain.chains.question_answering import load_qa_chain from langchain.callbacks import get_openai_callback import os # Sidebar contents with st.sidebar: st.title(':orange[BinDoc GmbH]') st.markdown( "Experience the future of document interaction with the revolutionary" ) st.markdown("**BinDocs Chat App**.") st.markdown("Harnessing the power of a Large Language Model and AI technology,") st.markdown("this innovative platform redefines PDF engagement,") st.markdown("enabling dynamic conversations that bridge the gap between") st.markdown("human and machine intelligence.") add_vertical_space(3) # Add more vertical space between text blocks st.write('Made with ❤️ by Anne') load_dotenv() def load_pdf(file_path): pdf_reader = PdfReader(file_path) text = "" for page in pdf_reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text=text) store_name = file_path.name[:-4] if os.path.exists(f"{store_name}.pkl"): with open(f"{store_name}.pkl", "rb") as f: VectorStore = pickle.load(f) else: embeddings = OpenAIEmbeddings() VectorStore = FAISS.from_texts(chunks, embedding=embeddings) with open(f"{store_name}.pkl", "wb") as f: pickle.dump(VectorStore, f) return VectorStore def load_chatbot(): return load_qa_chain(llm=OpenAI(), chain_type="stuff") def main(): st.title("BinDocs Chat App") pdf = st.file_uploader("Upload your PDF", type="pdf") if "chat_history" not in st.session_state: st.session_state['chat_history'] = [] if "current_input" not in st.session_state: st.session_state['current_input'] = "" if "processing_input" not in st.session_state: st.session_state['processing_input'] = "" display_chat_history(st.session_state['chat_history']) st.write("", unsafe_allow_html=True) st.write("
", unsafe_allow_html=True) st.write("", unsafe_allow_html=True) if pdf is not None: query = st.text_input("Ask questions about your PDF file (in any preferred language):", value=st.session_state['current_input']) if query != st.session_state['current_input']: st.session_state['current_input'] = query if st.button("Ask"): st.session_state['processing_input'] = st.session_state['current_input'] st.session_state['chat_history'].append(("User", st.session_state['processing_input'], "new")) loading_message = st.empty() loading_message.text('Bot is thinking...') VectorStore = load_pdf(pdf) chain = load_chatbot() docs = VectorStore.similarity_search(query=st.session_state['processing_input'], k=3) with get_openai_callback() as cb: response = chain.run(input_documents=docs, question=st.session_state['processing_input']) # Display the bot's response immediately using JavaScript st.write(f"