Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
|
|
3 |
import random
|
4 |
import time
|
5 |
from dotenv import load_dotenv
|
@@ -38,6 +39,18 @@ if 'session_id' not in st.session_state:
|
|
38 |
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
# Step 1: Clone the Dataset Repository
|
42 |
repo = Repository(
|
43 |
local_dir="Private_Book", # Local directory to clone the repository
|
@@ -235,6 +248,22 @@ def display_session_id():
|
|
235 |
st.sidebar.markdown(f"**Ihre Session ID:** `{session_id}`")
|
236 |
st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.")
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
def page1():
|
240 |
try:
|
@@ -480,125 +509,65 @@ def page2():
|
|
480 |
|
481 |
def page3():
|
482 |
try:
|
|
|
483 |
hide_streamlit_style = """
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
490 |
|
491 |
-
|
492 |
-
col1, col2 = st.columns([3, 1])
|
493 |
|
494 |
with col1:
|
495 |
st.title("Kosten- und Strukturdaten der Krankenhäuser")
|
496 |
|
497 |
with col2:
|
498 |
-
#
|
499 |
image = Image.open('BinDoc Logo (Quadratisch).png')
|
500 |
st.image(image, use_column_width='always')
|
501 |
|
502 |
-
|
503 |
-
|
|
|
504 |
st.error("File not found. Please check the file path.")
|
505 |
return
|
506 |
|
507 |
-
VectorStore = load_vector_store(pdf_path3, "Kosten_Str_2301", force_reload=True)
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
display_chat_history(st.session_state['chat_history_page3'])
|
512 |
|
|
|
513 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
514 |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
515 |
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
516 |
|
|
|
517 |
new_messages_placeholder = st.empty()
|
518 |
|
|
|
519 |
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")
|
520 |
|
521 |
-
|
522 |
-
|
523 |
-
# Create two columns for the buttons
|
524 |
col1, col2 = st.columns(2)
|
525 |
-
|
526 |
-
with col1:
|
527 |
-
if st.button("Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"):
|
528 |
-
query = "Wie hat sich die Bettenanzahl in den letzten 10 Jahren entwickelt?"
|
529 |
-
if st.button("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?"):
|
530 |
-
query = ("Wie viele Patienten wurden im Jahr 2017 vollstationär behandelt?")
|
531 |
-
if st.button("Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern?"):
|
532 |
-
query = "Wie viele Vollkräfte arbeiten in Summe 2021 in deutschen Krankenhäusern? "
|
533 |
-
|
534 |
-
|
535 |
-
with col2:
|
536 |
-
if st.button("Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"):
|
537 |
-
query = "Welche unterschiedlichen Personalkosten gibt es im Krankenhaus?"
|
538 |
-
if st.button("Welche Sachkosten werden in Krankenhäusern unterschieden?"):
|
539 |
-
query = "Welche Sachkosten werden in Krankenhäusern unterschieden? "
|
540 |
-
if st.button("Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?"):
|
541 |
-
query = "Wie hoch sind die Gesamtkosten der Krankenhäuser pro Jahr: 2019, 2020, 2021?"
|
542 |
-
|
543 |
-
|
544 |
|
545 |
if query:
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
# Start timing
|
550 |
-
start_time = time.time()
|
551 |
-
|
552 |
-
# Create a placeholder for the response time
|
553 |
-
response_time_placeholder = st.empty()
|
554 |
-
|
555 |
-
with st.spinner('Eve denkt über Ihre Frage nach...'):
|
556 |
-
chain = load_chatbot()
|
557 |
-
docs = VectorStore.similarity_search(query=query, k=5)
|
558 |
-
with get_openai_callback() as cb:
|
559 |
-
response = chain.run(input_documents=docs, question=full_query)
|
560 |
-
response = handle_no_answer(response) # Process the response through the new function
|
561 |
|
|
|
|
|
|
|
|
|
|
|
562 |
|
563 |
-
|
564 |
-
#
|
565 |
-
end_time = time.time()
|
566 |
-
|
567 |
-
# Calculate duration
|
568 |
-
duration = end_time - start_time
|
569 |
-
|
570 |
-
st.session_state['chat_history_page3'].append(("Eve", response, "new"))
|
571 |
-
|
572 |
-
# Combine chat histories from all pages
|
573 |
-
all_chat_histories = [
|
574 |
-
st.session_state['chat_history_page1'],
|
575 |
-
st.session_state['chat_history_page2'],
|
576 |
-
st.session_state['chat_history_page3']
|
577 |
-
]
|
578 |
-
|
579 |
-
# Save the combined chat histories
|
580 |
-
save_conversation(all_chat_histories, st.session_state['session_id'])
|
581 |
-
|
582 |
-
|
583 |
-
# Display new messages at the bottom
|
584 |
-
new_messages = st.session_state['chat_history_page3'][-2:]
|
585 |
-
for chat in new_messages:
|
586 |
-
background_color = "#ffeecf" if chat[2] == "new" else "#ffeecf" if chat[0] == "User" else "#ffeecf"
|
587 |
-
new_messages_placeholder.markdown(f"<div style='background-color: {background_color}; padding: 10px; border-radius: 10px; margin: 10px;'>{chat[0]}: {chat[1]}</div>", unsafe_allow_html=True)
|
588 |
-
|
589 |
-
# Update the response time placeholder after the messages are displayed
|
590 |
-
response_time_placeholder.text(f"Response time: {duration:.2f} seconds")
|
591 |
-
|
592 |
-
|
593 |
-
# Clear the input field after the query is made
|
594 |
-
query = ""
|
595 |
-
|
596 |
-
# Mark all messages as old after displaying
|
597 |
-
st.session_state['chat_history_page3'] = [(sender, msg, "old") for sender, msg, _ in st.session_state['chat_history_page3']]
|
598 |
|
599 |
except Exception as e:
|
600 |
st.error(f"Upsi, an unexpected error occurred: {e}")
|
601 |
-
# Optionally log the exception details to a file or error tracking service
|
602 |
|
603 |
def page4():
|
604 |
try:
|
|
|
1 |
import streamlit as st
|
2 |
from PIL import Image
|
3 |
+
from pinecone import Pinecone
|
4 |
import random
|
5 |
import time
|
6 |
from dotenv import load_dotenv
|
|
|
39 |
|
40 |
|
41 |
|
42 |
+
|
43 |
+
# Initialize Pinecone client
|
44 |
+
api_key = os.environ["api_key"]
|
45 |
+
|
46 |
+
# Consider securely storing and accessing this
|
47 |
+
Pinecone.init(api_key=api_key)
|
48 |
+
index_name = "canopy--document-uploader" # Replace with your chosen index name
|
49 |
+
|
50 |
+
index = Pinecone.Index(name=index_name)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
# Step 1: Clone the Dataset Repository
|
55 |
repo = Repository(
|
56 |
local_dir="Private_Book", # Local directory to clone the repository
|
|
|
248 |
st.sidebar.markdown(f"**Ihre Session ID:** `{session_id}`")
|
249 |
st.sidebar.markdown("Verwenden Sie diese ID als Referenz bei Mitteilungen oder Rückmeldungen.")
|
250 |
|
251 |
+
|
252 |
+
def query_pinecone(user_input, index, top_k=5):
|
253 |
+
# Assuming 'user_input' is the text from the user you want to query against the vector database
|
254 |
+
# And 'index' is your initialized Pinecone index
|
255 |
+
|
256 |
+
# Query Pinecone index for similar vectors
|
257 |
+
query_results = index.query(
|
258 |
+
vector=user_input, # Pinecone automatically handles embedding if set up to do so
|
259 |
+
top_k=top_k,
|
260 |
+
include_metadata=True # Set to True if you want to include metadata in the response
|
261 |
+
)
|
262 |
+
|
263 |
+
# Process query results
|
264 |
+
matches = query_results["matches"]
|
265 |
+
return matches
|
266 |
+
|
267 |
|
268 |
def page1():
|
269 |
try:
|
|
|
509 |
|
510 |
def page3():
|
511 |
try:
|
512 |
+
# Hide Streamlit's default UI elements
|
513 |
hide_streamlit_style = """
|
514 |
+
<style>
|
515 |
+
#MainMenu {visibility: hidden;}
|
516 |
+
footer {visibility: hidden;}
|
517 |
+
</style>
|
518 |
+
"""
|
519 |
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
520 |
|
521 |
+
# Create columns for layout
|
522 |
+
col1, col2 = st.columns([3, 1])
|
523 |
|
524 |
with col1:
|
525 |
st.title("Kosten- und Strukturdaten der Krankenhäuser")
|
526 |
|
527 |
with col2:
|
528 |
+
# Display an image in the right column
|
529 |
image = Image.open('BinDoc Logo (Quadratisch).png')
|
530 |
st.image(image, use_column_width='always')
|
531 |
|
532 |
+
# Check if the PDF file exists
|
533 |
+
pdf_path3 = "Private_Book/Kosten_Strukturdaten_RAG_vorbereited.pdf"
|
534 |
+
if not os.path.exists(pdf_path3):
|
535 |
st.error("File not found. Please check the file path.")
|
536 |
return
|
537 |
|
|
|
|
|
|
|
|
|
538 |
display_chat_history(st.session_state['chat_history_page3'])
|
539 |
|
540 |
+
# Spacer
|
541 |
st.write("<!-- Start Spacer -->", unsafe_allow_html=True)
|
542 |
st.write("<div style='flex: 1;'></div>", unsafe_allow_html=True)
|
543 |
st.write("<!-- End Spacer -->", unsafe_allow_html=True)
|
544 |
|
545 |
+
# New messages placeholder
|
546 |
new_messages_placeholder = st.empty()
|
547 |
|
548 |
+
# User query input
|
549 |
query = st.text_input("Geben Sie hier Ihre Frage ein / Enter your question here:")
|
550 |
|
551 |
+
# Query buttons
|
|
|
|
|
552 |
col1, col2 = st.columns(2)
|
553 |
+
# Define buttons and their queries here as before
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
554 |
|
555 |
if query:
|
556 |
+
# Query Pinecone index
|
557 |
+
matches = query_pinecone(query, index, top_k=5)
|
558 |
+
# Assuming query_pinecone is a function that sends the query to Pinecone and retrieves matches
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
+
for match in matches:
|
561 |
+
# Display matched texts and their scores
|
562 |
+
matched_text = match["metadata"].get("text", "No text available")
|
563 |
+
similarity_score = match["score"]
|
564 |
+
st.write(f"Matched Text: {matched_text} - Score: {similarity_score}")
|
565 |
|
566 |
+
# Append the user query to chat history and process it as before
|
567 |
+
process_and_display_chat_history(query, matches) # You would need to implement this based on your application logic
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
except Exception as e:
|
570 |
st.error(f"Upsi, an unexpected error occurred: {e}")
|
|
|
571 |
|
572 |
def page4():
|
573 |
try:
|